Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: VTCP là (3;-5)
=>VTPT là (5;3)
b: 3t-2=14
=>3t=16
=>t=16/3
=>y=-7-5t=-7-80/3=-101/3
c: -5t-7=-12
=>5t+7=12
=>t=1
=>x=-2+3=1
d: H(14;-101/3); G(1;-12)
Tọa đọ trung điểm là:
\(\left\{{}\begin{matrix}x=\dfrac{14+1}{2}=\dfrac{15}{2}\\y=\dfrac{1}{2}\left(-\dfrac{101}{3}-12\right)=-\dfrac{137}{6}\end{matrix}\right.\)
d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt
Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của \(\Delta\), do d và \(\Delta\) tạo với nhau 1 góc 60 độ
\(\Rightarrow\dfrac{\left|a.1+b.1\right|}{\sqrt{1^2+1^2}.\sqrt{a^2+b^2}}=cos60^0=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{2}\left|a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(a+b\right)^2=a^2+b^2\)
\(\Rightarrow a^2+4ab+b^2=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-2-\sqrt{3}\\b=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\) Có 2 đường thẳng \(\Delta\) thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-2\right)-\left(2+\sqrt{3}\right)\left(y+6\right)=0\\1\left(x-2\right)-\left(2-\sqrt{3}\right)\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\left(2+\sqrt{3}\right)y-14-6\sqrt{3}=0\\x-\left(2-\sqrt{3}\right)y-14+6\sqrt{3}=0\end{matrix}\right.\)
Tương tự bài trước, ta có:
\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)
Gọi \(C\left(x;y\right)\) và G là trọng tâm tam giác
\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+5}{3}\\y_G=\dfrac{y-5}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+5}{3}\right)-\dfrac{y-5}{3}-8=0\)
\(\Leftrightarrow3x-y-4=0\) \(\Rightarrow y=3x-4\Rightarrow C\left(x;3x-4\right)\)
\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)
\(\Leftrightarrow\dfrac{3}{2}=\dfrac{1}{2}\left|5\left(3x-1\right)-\left(x-2\right)\right|\)
\(\Leftrightarrow x=...\)
Câu 1)
Gọi PT đường thẳng $MK$ là \((\Delta):y=ax+b\)
Vì \((\Delta)\perp (d)\Rightarrow a(-2)=-1\Rightarrow a=\frac{1}{2}\)
Mặt khác \(M(3,3)\in (\Delta)\Rightarrow 3=\frac{3}{2}+b\Rightarrow b=\frac{3}{2}\Rightarrow (\Delta):y=\frac{x}{2}+\frac{3}{2}\)
Gọi tọa độ của $K=(m,n)$. Vì \(K\in (\Delta),(d)\) nên \(\left\{\begin{matrix} n=\frac{m}{2}+\frac{3}{2}\\ n=-2m+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=1\\ n=2\end{matrix}\right.\Rightarrow K(1,2)\)
Từ đkđb có $K$ là trung điểm của $MP$. Do đó:
\(\left\{\begin{matrix} m=1=\frac{3+x_P}{2}\\ n=2=\frac{3+y_P}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_P=-1\\ y_P=1\end{matrix}\right.\Rightarrow P(-1,1)\)
Câu 2:
a) Ta có \(\left\{\begin{matrix} (d):y=\frac{x}{2}-2\\ (d'):y=\frac{-3x}{2}+4\end{matrix}\right.\Rightarrow \) phương trình hoành độ giao điểm là:
\(\frac{x}{2}-2=\frac{-3x}{2}+4(1)\Leftrightarrow x=3\Rightarrow y=\frac{-1}{2}\)
Rõ ràng PT $(1)$ có nghiệm nên hai đường thẳng cắt nhau tại \(M(3,\frac{-1}{2})\)
b) Gọi PT đường thẳng cần tìm là $y=ax+b$
Vì đường thẳng đó vuông góc với $(d)$ nên \(\frac{a}{2}=-1\Rightarrow a=-2\)
Do $M$ thuộc đường thẳng đó nên \(-\frac{1}{2}=3(-2)+b\Rightarrow b=\frac{11}{2}\)
\(\Rightarrow \text{PTĐT}:y=-2x+\frac{11}{2}\)
\(A\left(a;a+1\right);B\left(b;1-2b\right)\\ \Rightarrow\left\{{}\begin{matrix}2x_P=a+b=4\\2y_P=a+1+1-2b=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{8}{3}\\b=\frac{4}{3}\end{matrix}\right.\\ \Rightarrow A\left(\frac{8}{3};\frac{11}{3}\right);B\left(\frac{4}{3};-\frac{5}{3}\right)\\ \Rightarrow\overrightarrow{AB}\left(-\frac{4}{3};-\frac{16}{3}\right)\Rightarrow\overrightarrow{n}_{AB}\left(4;-1\right)\Rightarrow pt\text{ }AB:4x-y-7=0\)
\(\left\{{}\begin{matrix}x=2t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtcp
Khi đó \(k\left(2;-3\right)\) với \(k\ne0\) cũng là vtcp của d
Ví dụ lấy \(k=2\) ta được 1 vtcp khác là \(\left(4;-6\right)\)
Từ đó suy ra được 2 vtpt là \(\left(3;2\right)\) và \(\left(6;4\right)\)
b/ Cho \(t=1\Rightarrow A\left(2;-2\right)\)
Cho \(t=0\Rightarrow B\left(0;1\right)\)