Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
\(B=3+3^3+3^5+...+3^{101}\)
\(3^2.B=3^3+3^5+3^7+...+3^{103}\)
\(\left(3^2-1\right)B=\left(3^3+3^5+3^7+...+3^{103}\right)-\left(3+3^3+3^5+...+3^{101}\right)\)
\(8B=3^{103}-3\)
\(B=\frac{3^{103}-3}{8}\)
a) Vì x và y là hai địa lượng tỉ lệ nghịch
\(y=\frac{a}{x}=a=x.y\)
Thay \(a=2.4\)
Vậy \(a=8\)
b) \(x=\frac{a}{y}\)
c) Vì x là y là hai đại lượng tỉ lệ nghịch
\(x=\frac{a}{y}=x=\frac{a}{y}\)
Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)
\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)
ta có :
\(2A=2+2^2+2^3+..+2^{100}=\left(1+2+2^2+..+2^{99}\right)+2^{100}-1=A+2^{100}-1\)
Vậy \(A=2^{100}-1=4^{50}-1\) nên \(A< 4^{50}\)
b, ta có : \(4^{50}\equiv1mod3\Rightarrow A=4^{50}-1\text{ chia hết cho 3}\)
còn : \(2^{100}=2.2^{99}=2.\left(2^3\right)^{33}=2.8^{33}\equiv2mod7\)
nên \(A=2^{100}-1\equiv1mod7\text{ hay A không chia hết chho 7}\)
Thu gọn và sắp xếp các hạng tử của đa thức A(x) = x5 + x3 - x2 + 2x3 -525
A. A(x) = x5 + x3 - x2 -1 B. A(x) = x5 - x3 + x2 -1
C. A(x) = x5 + 3x3 - x2 D. A(x) = x5 + 3x3 - x2 -1
a, \(A=4x^6y^7\)
b, hệ số 4 ; bậc 13
c, Thay x = 3 ; y = -2 ta đc
4 . 4^6 . (-2)^7 = -2097152