Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N 1 2 3 1 2 3
Hình ko được chuẩn lắm thôm cảm
a)Vì \(BC//DM\Rightarrow\widehat{B_2}=\widehat{N_1}\)(Dấu hiệu nhận biết 2đt //)
Vì \(AB//MN\Rightarrow\widehat{D_1}=\widehat{N_2}\)(Dấu hiệu nhận biết 2đt //)
Xét \(\Delta DBN\) và \(\Delta NMD\) có
\(\widehat{B_2}=\widehat{N_1}\left(CMT\right)\)
DN chung
\(\widehat{D_1}=\widehat{N_2}\left(CMT\right)\)
\(\Rightarrow\Delta DBN=\Delta NMD\left(g.c.g\right)\)
Câu b chờ tí
O y x B A z I H 1 2
GT : \(\widehat{xOy};\) \(\widehat{O_1}=\widehat{O_2}\); OA= OB
\(I\in z\left(I\ne O\right)\);
b, AB cắt Oz tại H
KL : a, Tam giác OAI = tam giác OIB
b, HA = HB
c, AB \(\perp\)Oz
M N E F I d
a) Xét tam giác MIE và tam giác NIF
MI = IN (GT)
góc MIE = góc NIF(2 góc đối đỉnh)
suy ra: tam giác MIE = tam giác NIF(c.h - g.n)
suy ra: góc FNI = góc EMI (2 góc t/ứ) [thêm vào để cm câu b] ko cần thêm từ ngoặc vuông
suy ra: ME = NF (2 cạnh t/ứ)
b)Xét tam giác MFN và tam giác NEM
FN = ME (CMT)
góc FNI = góc EMI (CMT)
MN: Cạnh chung
Suy ra: tam giác MFN = tam giác NEM (c.g.c)
suy ra: MF = NE (2 cạnh t/ứ)
Câu b có 2 cách chứng minh đó là cách 1 mình sẽ để cho bạn 1 trong 2 cách nếu bạn thích cách nào hơn thì chọn nhưng mình thấy thì cách 1 liên quan đến câu a hơn nên mình khuyên vẫn nên chọn cách 1
Ta có:tam giác MIE = tam giác NIF(CMT)
suy ra: IF = IE(2 cạnh t/ứ)
Xét tam giác MIF và tam giác NIE
MI = NI (GT)
góc MIF = góc NIE(2 góc đối đỉnh)
IE = IF(CMT)
suy ra: tam giác MIF = tam giác NIE(c.g.c)
suy ra:MF = NE (2 cạnh t/ứ)
tu ve hinh :
a, AE | AB va AD | AC (gt) => goc DAC = goc BAE = 90 (dn)
goc DAB + goc BAC = goc DAC
goc EAC + goc CAB = goc BAE
=> goc DAB = goc CAE
xet tamgiac BDA va tamgiac ECA co :
AD = AC (gt) va AB = AE (gt)
=> tamgiac BDA = tamgiac ECA (c - g - c)
=> BD = CE (dn)
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a) Xét tam giác ABC và tam giác MNC ta có:
MC=AC ( gt)
BC=NC (gt)
góc NCM = góc BCA ( 2 góc đối đỉnh )
=> tam giác ABC = tam giác MNC ( c.g.c)
b) => góc BAC = góc NMC ( 2 góc tương ứng )
<=> góc NMC=90 độ ( góc BAC=90 độ )
<=> \(AM\perp MN\)
đpcm
c) Tạo hình: gọi D là giao điểm của CE và MN
Có tam giác ABC = tam giác MNC
=> góc EBC= góc DNC ( 2 góc tương ứng )
Tự c/m: tam giác NDC = tam giác BEC ( g.c.g)
=> ND=BE ( 2 cạnh tương ứng )
tam giác AEC = tam giác MDC ( c.g.c )
=> MD=AE ( 2 cạnh tương ứng )
Lại có: AE=BE ( gt )
=> ND=MD
=> D là trung điểm của MN
=> CE đi qua trung điểm MN
đpcm
cho mik hỏi câu hỏi nay kg phải là định lý đâu mà viết gt, kl???