K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN

Mà AM=CN

=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)

=> AC và MN là đường chéo của hbh AMCN

Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

A cố định C cố định => O cố định => MN luôn đi qua O cố định

21 tháng 1 2021

Xét Tam giác ADB:  MN // AB (gt)

Suy ra:  DN/DB = MN/AB  (Hệ quả định lí Talét) (1)

Xét Tam giác ACB:  PQ // AB (gt)

Suy ra:  CQ/CB = PQ/AB    (Hệ quá định lí Talét)  (2)

Ta có:   NQ  sog sog  AB (gt)

             AB  sog sog  CD (gt)

Suy ra:  NQ  sog sog  CD (cùng sog sog  AB)

Xét Tam giác BDC:  NQ  sog sog  CD (cmt)

Suy ra:  DN/DB = CQ/CB (Định lí Talét)                (3)

Từ (1), (2) và (3)  suy ra:  MN/AB  =  PQ/AB

                             Suy ra:  MN = PQ  (đpcm).

 

29 tháng 6 2021

A B C M N I D E J

Gọi J là trung điểm cạnh BC, MN cắt AJ tại I.

Vì MADB và MAEC là các hình bình hành nên \(BD=MA=CE,BD||MA||CE\)

Suy ra BDEC là hình bình hành, suy ra N là trung điểm BE. Do đó NJ là đường trung bình \(\Delta BEC\)

Suy ra \(NJ||CE||AM,NJ=\frac{1}{2}CE=\frac{1}{2}AM\)

Theo định lí Thales \(\frac{IJ}{IA}=\frac{NJ}{MA}=\frac{1}{2}\). Vì AJ là trung tuyến của \(\Delta ABC\) nên I là trọng tâm \(\Delta ABC\)

Vậy MN đi qua I cố định.

a: DN/BD=DM/DA

CP/CA=CQ/CB

mà DM/DA=CQ/CB

nên DN/BD=CP/CA

b: Xét ΔDAB có MN//AB

nên MN/AB=DM/DA

Xet ΔCAB có PQ//AB

nên PQ/AB=CQ/CP

mà DM/DA=CQ/CP

nên  MN=PQ

29 tháng 10 2021

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

12 tháng 8 2017

Trong ΔADB, ta có: MN // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hệ quả định lí ta-lét) (1)

Trong ΔACB, ta có: PQ // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quá định lí Ta-lét) (2)

Lại có: NQ // AB (gt)

       AB // CD (gt)

Suy ra: NQ // CD

Trong ΔBDC, ta có: NQ // CD (chứng minh trên)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(Định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hay MN = PQ.