Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a) Xét tam giác PHM và tam giác PHN có
PH chung
góc PHM = góc PHN (PH là đường trung trực)
MH = HN (PH là đường trung trực)
=> tam giác PHM = tam giác PHN (c g c)
=> \(\hept{\begin{cases}PM=PN\\\widehat{MPH}=\widehat{NPH}\end{cases}}\)
=> PH là phân giác của góc MPN
b) Xét tam giác QPM và tam giác QPN có
PM=PN (cmt)
góc MPH = góc NPH
PQ chung
=> tam giác QPM = tam giác QPN (c g c)
thực sự là mình không biết vẽ hình
Chứng minh
a, Xét \(\Delta ABE\) và \(\Delta DBE\) có
BE chung
\(\widehat{BAE}=\widehat{BDE}\) (=1v)
BA = BD (gt)
\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
b, \(\Delta ABE=\Delta DBE\) (câu a )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)
\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)
mà \(\Delta EDC\) vuông tại D
\(\Rightarrow EC>ED\) (2)
Từ (1) và (2) \(\Rightarrow EC>EA\)
Gọi N là giao điểm của AD và BE
Xét \(\Delta ABN\) và \(\Delta DBN\) có :
BA = BD (gt)
\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)
BN chung
\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)
\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)
và \(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)
mà \(\widehat{ANB}+\widehat{DNB}=180^O\)
\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)
Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD
a) xét 2 tam giac vuong ABE va DBE co
AB = BD (gt)
BE canh chung
suy ra: tam giac ABE = tam giac DBE (ch-cgv)
b) tu cau a) Tam giac ABE = tam giac DBE
Suy ra :AE = DE (2 canh tuong ung) (1)_
trong tam giác EDC vuông tại D
suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)
Tu (1) va (2) suy ra: EC >EA
Ta co : AE=ED (cmt)
suy ra: E thuộc đường trung trực của AD (3)
ta có:AB=BD(gt)
suy ra: B thuoc duong trung truc AD (4)
tu (3) va (4) suy ra: BE la duong trung truc cua AD
A B C E D M
Sửa đề; AE là phân giác
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Xét ΔEBK và ΔEDC có
\(\widehat{BEK}=\widehat{DEC}\)
EB=ED
\(\widehat{EBK}=\widehat{EDC}\)
Do đó: ΔEBK=ΔEDC
c: ta có: AB=AD
EB=ED
DO đó:AE là đường trung trực của BD
Ta có: ΔAKC cân tại A
mà AE là đường phân giác
nên AE là đường trung trực của CK
Này phạm nhất duy , chắc có lẽ bạn chưa học , nếu \(\Delta\)ABD cân ( vì AD = AB ) mà AK là đường phân giác của tam giác đó thì \(\Rightarrow\) AK là đường cao , đường trung tuyến , đường trung trực của \(\Delta\)ABD
a) PH là phân giác \(\widehat{MPN}\)
Ta có: PH là đường trung trực của MN (gt)
\(\Rightarrow\left\{{}\begin{matrix}MH=NH\\\widehat{MHP}=\widehat{NHP}=90^o\end{matrix}\right.\)
mà \(\widehat{MPN}=180^o\)(gt)
\(\Rightarrow\widehat{MHP}=\widehat{NHP}=\widehat{\dfrac{MPN}{2}}\)
\(\Rightarrow\) đpcm
b) Ta có: Q thuộc đường trung trực của MN (gt) \(\Rightarrow\) QM = QN
P thuộc đường trung trực của MN (gt) \(\Rightarrow\) PM = PN
(muốn viết cụ thể ra vì sao nó bằng nhau thì chứng minh tg QMP = tg QNP trường hợp c-g-c cậu nhé)
Xét \(\Delta QPM,\Delta QPN\) có:
QP là cạnh chung
QM = QN (cmt)
PM = PN (cmt)
\(\Rightarrow\Delta QPM=\Delta QPN\left(c-c-c\right)\)
Hình bạn tự vẽ nha:
a, Xét tam giác MHP và tam giác NHP có:
+MH=NH(gt)
+ góc MHP= góc NHP( gt)
+ PH: cạnh chung
=>tam giác MHP = tam giác NHP ( c-c-c)
=> góc MPH= góc NPH( góc t.ứ)
hay: PH là phân giác của góc MPN( đpcm)