Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ
a/ Xét tam giác AIB và tam giác AIC có:
AI cạnh chung
góc AIB=góc AIC=90 độ
BI=IC(I là trung điểm BC)
=> tam giác AIB=tam giác AIC(c-g-c)
b/ Từ tam giác AIB=tam giác AIC suy ra: góc BAi=góc CAI
Xét tam giác AIH và tam giác AIK có:
AI chung
góc BAI=góc CAI(cmt)
góc H=góc K=90 độ
=> tam giác AIH= tam giác AIK (ch-gn)
=> AH=AK(cạnh tương ứng)
Vậy tam giác AHK là tam giác cân và cân tại A
* Ninja school sai vì thiếu bẵng nếu thiếu dấu bằng vậy sẽ bằng 22,9...
Bạn ấy sai nha mn
a. Xét tam giác AIB và AIC, có
IB= IC ( I là trung điểm BC )
AI chung , AIB = AIC ( A là trung trục của BC )
suy ra 2 tam giac tren bang nhau
b. Cm
Câu 3 :
A I B C H K
Xét \(\Delta AIB,\Delta AIC\) có :
\(BI=CI\) (I là trung điểm của BC)
\(\widehat{AIB}=\widehat{AIC}\) (tính chất đường trung trực)
\(AI:Chung\)
=> \(\Delta AIB=\Delta AIC\left(c.g.c\right)\)
Xét \(\Delta HBI,\Delta KCI\) có :
\(\widehat{HBI}=\widehat{KCI}\) (do \(\Delta AIB=\Delta AIC\))
\(BI=CI\) (I là trung điểm của BC)
\(\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\)
=> \(\Delta HBI=\Delta KCI\) (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> \(\Delta IHK\) cân tại I
Ta có : \(\left\{{}\begin{matrix}\widehat{BHI}+\widehat{IHK}+\widehat{AHK}=180^o\\\widehat{CKI}+\widehat{IKH}+\widehat{AKH}=180^o\end{matrix}\right.\left(Kềbù\right)\)
Lại có : \(\left\{{}\begin{matrix}\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\\\widehat{IHK}=\widehat{IKH}\left(\text{Tam giác IHK cân tại I}\right)\end{matrix}\right.\)
Suy ra : \(180^o-\left(\widehat{BHI}+\widehat{IHK}\right)=180^o-\left(\widehat{CKI}+\widehat{IKH}\right)\)
\(\Leftrightarrow\widehat{AHK}=\widehat{AKH}\)
=> \(\Delta AHK\) cân tại A
Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(\text{HK // BC }\)
=> đpcm.
Xét ΔAIB,ΔAIC có
:BI=CI (I là trung điểm của BC)
ˆAIB=ˆAIC (tính chất đường trung trực)
AI:Chung
=> ΔAIB=ΔAIC(c.g.c)
Xét ΔHBI,ΔKCI có :
ˆHBI=ˆKCI (do ΔAIB=ΔAIC)
BI=CI (I là trung điểm của BC)
ˆBHI=ˆCKI(=90o)
=> ΔHBI=ΔKCI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> ΔIHK cân tại I
Ta có : {ˆBHI+ˆIHK+ˆAHK=180oˆCKI+ˆIKH+ˆAKH=180o(Kềbù)
Lại có : {ˆBHI=ˆCKI(=90o)ˆIHK=ˆIKH(Tam giác IHK cân tại I)
Suy ra : 180o−(ˆBHI+ˆIHK)=180o−(ˆCKI+ˆIKH)⇔ˆAHK=ˆAKH
=> ΔAHK cân tại A
Ta có : ˆAHK=ˆAKH=180O−ˆA2(1)
Xét ΔABC cân tại A có :ˆABC=ˆACB=180o−ˆA2(2)Từ (1) và (2) => ˆAHK=ˆABC(=180o−ˆA2) Mà thấy : 2 góc này ở vị trí đồng vị
=> HK // BC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)
2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau
b
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM