K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)

2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau

 b 
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM

Dễ

a/ Xét tam giác AIB và tam giác AIC có:

AI cạnh chung

góc AIB=góc AIC=90 độ

BI=IC(I là trung điểm BC)

=> tam giác AIB=tam giác AIC(c-g-c)

b/ Từ tam giác AIB=tam giác AIC suy ra: góc BAi=góc CAI

Xét tam giác AIH và tam giác AIK có:

AI chung

góc BAI=góc CAI(cmt)

góc H=góc K=90 độ

=> tam giác AIH= tam giác AIK (ch-gn)

=> AH=AK(cạnh tương ứng)

Vậy tam giác AHK là tam giác cân và cân tại A

21 tháng 3 2021

a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau

3 tháng 12 2019

* Ninja school sai vì thiếu bẵng nếu thiếu dấu bằng vậy sẽ bằng 22,9...

Bạn ấy sai nha mn

5 tháng 3 2018

Câu 3 :

A I B C H K

Xét \(\Delta AIB,\Delta AIC\) có :

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{AIB}=\widehat{AIC}\) (tính chất đường trung trực)

\(AI:Chung\)

=> \(\Delta AIB=\Delta AIC\left(c.g.c\right)\)

Xét \(\Delta HBI,\Delta KCI\) có :

\(\widehat{HBI}=\widehat{KCI}\) (do \(\Delta AIB=\Delta AIC\))

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\)

=> \(\Delta HBI=\Delta KCI\) (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> \(\Delta IHK\) cân tại I

Ta có : \(\left\{{}\begin{matrix}\widehat{BHI}+\widehat{IHK}+\widehat{AHK}=180^o\\\widehat{CKI}+\widehat{IKH}+\widehat{AKH}=180^o\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\left\{{}\begin{matrix}\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\\\widehat{IHK}=\widehat{IKH}\left(\text{Tam giác IHK cân tại I}\right)\end{matrix}\right.\)

Suy ra : \(180^o-\left(\widehat{BHI}+\widehat{IHK}\right)=180^o-\left(\widehat{CKI}+\widehat{IKH}\right)\)

\(\Leftrightarrow\widehat{AHK}=\widehat{AKH}\)

=> \(\Delta AHK\) cân tại A

Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(\text{HK // BC }\)

=> đpcm.

13 tháng 3 2020

Xét ΔAIB,ΔAIC có

:BI=CI (I là trung điểm của BC)

ˆAIB=ˆAIC (tính chất đường trung trực)

AI:Chung

=> ΔAIB=ΔAIC(c.g.c)

Xét ΔHBI,ΔKCI có :

ˆHBI=ˆKCI (do ΔAIB=ΔAIC)

BI=CI (I là trung điểm của BC)

ˆBHI=ˆCKI(=90o)

=> ΔHBI=ΔKCI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> ΔIHK cân tại I

Ta có : {ˆBHI+ˆIHK+ˆAHK=180oˆCKI+ˆIKH+ˆAKH=180o(Kềbù)

Lại có : {ˆBHI=ˆCKI(=90o)ˆIHK=ˆIKH(Tam giác IHK cân tại I)

Suy ra : 180o−(ˆBHI+ˆIHK)=180o−(ˆCKI+ˆIKH)⇔ˆAHK=ˆAKH

=> ΔAHK cân tại A

Ta có : ˆAHK=ˆAKH=180O−ˆA2(1)

Xét ΔABC cân tại A có :ˆABC=ˆACB=180o−ˆA2(2)Từ (1) và (2) => ˆAHK=ˆABC(=180o−ˆA2) Mà thấy : 2 góc này ở vị trí đồng vị

=> HK // BC

29 tháng 1 2017

a. Xét tam giác AIB và AIC, có

IB= IC ( I là trung điểm BC )

AI chung , AIB = AIC ( A là trung trục của BC )

suy ra 2 tam giac tren bang nhau

b. Cm 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0