Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F M N
Xét \(\Delta ABE\)và \(\Delta DBC\)có :
\(AB=BD\)( do \(\Delta ABD\)đều )
\(\widehat{ABE}=\widehat{DBC}\)(vì \(\widehat{ABD}+\widehat{DBE}=\widehat{DBE}+\widehat{EBC}\left(\widehat{ABD}=\widehat{EBC}=45^o\right)\)
\(BC=BE\)(do \(\Delta BEC\)đều )
\(\Rightarrow\Delta ABE=\Delta DBC\left(c.g.c\right)\)
\(\Rightarrow AE=DC\left(dpcm\right)\)
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
A B C D E M N P I
Kéo dài AD cắt EC tại I. Xét tam giác IAC có \(\widehat{IAC}=\widehat{ICA}=45^o\Rightarrow\widehat{AIC}=90^o\Leftarrow AD\perp EC.\)
Xét \(\Delta EAC\) có \(AD\perp EC;EB\perp AC\Rightarrow\) D là trực tâm hay \(DC\perp EA\left(1\right).\)
Tam giác EDC có NP là đường trung bình nên NP // DC (2).
Tam giác EDA có NM là đường trung bình nên NM // AE (3).
Từ (1), (2), (3) ta suy ra \(MN\perp NP.\)
Lại có \(AE^2=AB^2+EB^2=DB^2+BC^2=DC^2\Rightarrow AE=DC.\)
Mà \(NM=\frac{EA}{2};NP=\frac{DC}{2}\Rightarrow MN=NP\)
Vậy tam giác NMP vuông cân tại N.
a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)
Xét tam giác DCB và tam giác ACE có:
DC = AC (gt)
CB = CE (gt)
\(\widehat{ACE}=\widehat{DCB}\) (cmt)
\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow DB=AE\) (Hai cạnh tương ứng)
b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)
Do DB = AE nên ME = NB
Xét tam giác CME và tam giác CNB có:
ME = NB (cmt)
CE = CB (gt)
\(\widehat{MEC}=\widehat{NBC}\) (cmt)
\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)
c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)
Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{MCN}=60^o\)
Xét tam giác CMN có CM = CN nên nó là tam giác cân.
Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.