K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta có:

Áp dụng hệ thức về cạnh và góc trong tam giác vuông, ta có:

Vậy diện tích tam giác MON là:

Đáp án cần chọn là: A

A B M X Y C D Drawed by Hoi con bo

Chắc mk nghĩ thế này là ổn lắm rùi

Hội con 🐄 chúc bạn học tốt!!! 

17 tháng 2 2023

a: Sửa đề:I là chân đường cao kẻ từ O xuống AB. Chứng minh H,O,K thẳng hàng

Xét tứ giác AHOI có

\(\widehat{AHO}+\widehat{AIO}=180^0\)

=>AHOI là tứ giác nội tiếp

=>\(\widehat{HOI}+\widehat{HAI}=180^0\)

Xét tứ giác OIBK có \(\widehat{OIB}+\widehat{OKB}=180^0\)

=>OIBK là tứ giác nội tiếp

=>\(\widehat{IOK}+\widehat{IBK}=180^0\)

AH//BK

=>\(\widehat{HAI}+\widehat{KBI}=180^0\)

\(\widehat{HOI}+\widehat{KOI}\)

\(=180^0-\widehat{HAI}+180^0-\widehat{KBA}\)

\(=360^0-180^0=180^0\)

=>H,O,K thẳng hàng

b: Xét ΔAHO vuông tại H và ΔAIO vuông tại I có

AO chung

\(\widehat{HAO}=\widehat{IAO}\)

Do đó: ΔAHO=ΔAIO

=>AH=AI

Xét ΔOIB vuông tại I và ΔOKB vuông tại K có

BO chung

\(\widehat{IBO}=\widehat{KBO}\)

Do đó: ΔOIB=ΔOKB

=>BI=BK

AH+BK=AI+IB=AB không đổi

\(\widehat{OBA}+\widehat{OAB}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{KBA}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔOAB vuông tại O

=>ΔOAB nội tiếp đường tròn đường kính BA

\(\widehat{HIK}=\widehat{HIO}+\widehat{KIO}\)

\(=\widehat{HAO}+\widehat{OBK}\)

\(=\widehat{OAB}+\widehat{OBA}=90^0\)

=>ΔHIK vuông tại I

=>ΔHIK nội tiếp đường tròn đường kính HK