Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi OO là giao ÁC,MDÁC,MD
ˆCHA=90∘⇒HO=AC2=MD2⇒ˆDHM=90∘CHA^=90∘⇒HO=AC2=MD2⇒DHM^=90∘
Tương tự ˆFHM=90∘⇒ˆDHF=90circ⇒D,H,FFHM^=90∘⇒DHF^=90circ⇒D,H,F thẳng hàng
Gọi II là giao DF,ACDF,AC
Đỏ ỐIỐI song song MF⇒IMF⇒I là trung điểm của DFDF
Kẻ II′⊥AB⇒I′II′⊥AB⇒I′ là trung điểm ABAB
Chứng minh II′=AB2⇒III′=AB2⇒I nằm trên đường trung trực của ABAB và cách ABAB một khoảng bằng AB2AB2
A B C D E H I O M N K d F G x y Q S
Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M
Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.
Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD
\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB
=> ^SBF=2. ^BDS .
\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét \(\Delta\)OIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
ΔAEC=ΔABD (c.g.c) => EC=BD
ΔEMC=ΔSMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB
=> ^SBF=2. ^BDS .
ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét ΔOIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
https://olm.vn/hoi-dap/detail/85270726121.html
Tham khảo link này(mình gửi cho)
Học tốt!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Làm được câu a và b thôi sorry nhé
a) +)AM=BM thì C trùng vơi E và tam giác ACB rõ ràng vuông cân(do có 2 góc đáy=45)
\Rightarrow đpcm
+)AM khác BM không mất tính tổng quát giả sử AM<BM \Rightarrow C nằm giữa E và M
AC vuông góc với BE vì 2 đường thẳng này đều hợp với AB 1 góc 45 và chúng không // với nhau.
EM vuông góc với AB
\Rightarrow C là trực tâm tam giác AEB => AE vuông góc BC
2 tam giác vuông AME và CMB bằng nhau (c.g.c)
\Rightarro AE=BC
Vậy AE=BC và AE vuông góc với BC (đccm)
b) vẫn xét TH AM<BM các TH khác tương tự
CD cắt AH tại J rõ ràng tamgiac DJA ~ tamgiacHJC (g
CMR:JDJA=JHJCJDJA=JHJC
CMR:tamgiac DJH ~ tamgiacAJC (c.g.c)
Tam giác sau có góc DHA = góc DCA=45
Hoàn toàn tương tự với tứ giác BHEF ( phải xác định giao điểm của HE và BF)
Do đó:góc EHF = góc EBF =45
\Rightarrow góc DHA=góc EHF \Rightarrow 2 góc đối đỉnh \Rightarrow D,H,F thẳng hàng.
Kẻ IN, DM song song với BC
suy ra IN song song vs DM
Tam giác EDM có Itrung điểm DE và IN song song vs DM
suy ra In là đương trung binh của tam giác EDM
suy ra N là trung điểm Em
ta có DM song song với BC suy ra DMCB là hình thang
Mà góc ABC =ACB
nên DMCB là hình thang cân
suy ra DB =MC
ta lại có DB=AE
suy ra MC =AE
suy ra AE+EN=CM+MN
vậy AN=NC
VẬY N là trung điểm AC
Tam giác ACK có N là trung điểm AC và IN song song với BC
suy ra IN là đường trung bình tam giác AKB
suy ra I la trung điểm AK
tứ giác ADKE có I là trung điểm DE và I trung điểm AK
nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường
A B M C D F E O N H S
a, AMCD là hình vuông (gt) => góc ACM = 45
BMEF là hình vuông (gt) => góc EMF = 45
=> góc ACM = góc EMF mà 2 góc này so le trong
=> AC // MF
MF _|_ FB do BMEF là hình vuông (gt)
=> AC _|_ FB
xét tam giác AEB có : EM _|_ AB
EM cắt AC tại C
=> BC _|_ AE (định lí)
b, gọi DM cắt AC tại O
EB cắt MF tại N
hình vuông AMCD có 2 đường chéo cắt nhau tại O
=> O là trung điểm của AC
có tam giác AHC vuông tại H (câu a)
=> HO là trung tuyến của tam giác AHC (Đn)
=> HO = AC/2
AC = DM do AMCD là hình vuông
=> HO = DM/2
=> tam giác DHM vuông tại H (định lí đảo)
=> góc DHM = 90
tương tự ta chứng minh được tam giác MFH vuông tại H => góc MHF = 90
=> góc DHM + góc MHF = 180
=> góc DHF = 180
=> D;F;H thẳng hàng
c, gọi AC cắt BE tại S
tam giác SAB có : góc SAB = góc SBA = 45 do ...
=> tam giác SAB vuông cân tại S (dh)
có AB cố định
=> S cố định (1)
O; N là trung điểm của DM; MF ; xét tam giác DMF
=> ON là đtb của tam giác DMF (Đn)
=> ON // DF (đl) (2)
tứ giác OSNM có : góc OSN = góc SNM = góc SOM = 90
=> OSNM là hình chữ nhật (dh)
=> OS // MN => OS // NF
OSNM là hcn => OS = NM Mà NM = NF => OS = NF
=> OSFN là hình bình hành (dh)
=> SF // ON (đn) và (2)
=> D,S,F thẳng hàng (tiên đề Ơ-clit) và (1)
=> DF luôn đi qua 1 điểm cố định khi M di chuyển trên AB
Xác định M trên AB sao cho MN có độ dài lớn nhất