Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự 2B. Gợi ý: Kéo dài AC và BD cắt nhau tại E. Xét các trường hợp khi M º A Þ C º A, D º E và khi M º B Þ D º B, C º E.
Từ đó chứng minh được I thuộc đường trung bình của DABE.
Tương tự bài 4. kéo dài AC và BD cắt nhau tại E. Từ đó chứng minh được I thuộc đường trung bình của DABE.
Xét ∆ CMB có EF là đường trung bình của ∆.
=> EF // MB <=> EF // AB. (1)
Xét ∆ ADM có KI là đường trung bình của ∆.
=> KI // AM <=> KI // AB. (2)
Từ (1);(2) => Tứ giác EFIK là hình thang. (3)
Gọi giao của CM và AD là O.
Xét ∆ COA có EK là đương trung bình ∆.
=> EK // CA.
Lại có KI // AM
Mà CA hợp với AM góc 60 độ (∆ACM đều)
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ.
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4)
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm
Bạn vẽ thêm hình nhé ^_^
dựa vào đâu mà bạn nói EK la đường trung bình của Tam giác COA ?
Tớ chỉ làm được một ít thôi,mong bạn thông cảm :)
Phần vẽ hình và ghi giả thuyết ,kết luận bạn tự làm nhé !
a) Xét tam giác MCB, ta có :
CE = ME (GT)
CF = FB (GT)
Nên EF là đường trung bình của tam giác MCB
=> EF // MB
=> EF // AB (Vì M € AB) (1)
Xét tam giác ADM ,ta có :
AK = KD (GT)
MI = ID (GT)
Nên IK là đường trung bình của tam giác ADM
=> IK // AM
=> IK // AB (Vì M € AB) (2)
Từ (1) và (2) => EF // IK
b) Xét tứ giác KIFE ,ta có :
EF // IK [câu (a)]
=> KIFE là hình thang
Sau đó bạn cần chứng minh cho góc K = góc I hoặc góc E = góc F
Do đó KIFE sẽ là hình thang cân
Vậy EI = KF
[ Ở câu b) này chỉ là tớ dự đoán phương hướng giải thôi ,chứ tớ cũng không biết có làm được không.]
c) Xét tam giác MCD ,ta có :
ME = CE (GT)
MI = ID (GT)
Nên EI là đường trung bình của tam giác MCD
=> EI = 1/2 CD (3)
mà EI = KF (4)
Từ (3) và (4) => KF = 1/2 CD
Các ý của bài này có liên quan đến nhau ,bạn hãy dựa vào đó để giải câu b) nhé !
Good luck !
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Chị @Hoàng Lê Bảo Ngọc
Anh @Nguyễn Huy Thắng
giúp bạn này nè
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~