Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D E y x
a) ta có AC vuông góc AB (gt)
BD vuông góc AB (gt)
=> AC//BC
Xét tam giác OAC và tam giác OBD ta có
OA=OB ( O là trung điểm AB)
góc OAC= góc OBD ( =90)
góc ACO= góc ODB (2 góc so le trong và AC// BD)
-> tam giac OAC = tam giác OBD (g-c-g)
-> OC= OD ( 2 cạnh tương ứng)
Xét tam giác OCE và tam giác ODE ta có
OE=OE ( canh chung)
CO=OD ( cmt)
góc COE= góc EOD (=90)
-> tam giac OCE= tam giac ODE (c-g-c)
c) ta có
ED=EB+BD
AC=BD ( tam giác OAC= tam giác OBD)
-> ED= BE+AC
mà CE= ED ( tam giác OCE = tam giác ODE)
nên CE = BE+AC
a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ
OA=OB (O là trung điểm của AB)
gAOC = gBOE (hai góc đối đỉnh)
=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)
xét tgCOD và tgEOD có: OC=OE (cmt)
gCOD=gEOD=90độ
OD là cạnh chung
=>tgCOD=tgEOD (c.g.c)
=> CD= DE (hai cạnh tương ứng)
mà DE=DB+BE =>CD=DB+BE
mà BE=AC(cmt)=>CD=AC+BD
b, xét tgCOJ và tgEOJ có : OC=OE (cmt)
gCOJ=gEOJ = 90độ
OJ là cạnh chung
=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE
xét tgCDJ và tgEDJ có: CD=DE (cmt)
DJ là cạnh chung
CJ=EJ (cmt)
=>tgCDJ=tgEDJ (c.c.c)
=>gDCJ=gDEJ
mà gDCJ = gJCO (CJ là tia phân giác của gOCD)
gJCO=gJEO (cmt)
=>gDEJ = gJEO =>EJ là tia phân giác của gBEO
Hình bạn tự vẽ nha!
a) Vì \(Ax\perp AB\left(gt\right)\)
=> \(\widehat{OAC}=90^0.\)
Vì \(By\perp AB\left(gt\right)\)
=> \(\widehat{OBD}=90^0.\)
Xét 2 \(\Delta\) vuông \(OAC\) và \(OBD\) có:
\(\widehat{OAC}=\widehat{OBD}=90^0\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(\widehat{AOC}=\widehat{BOD}\) (vì 2 góc đối đỉnh)
=> \(\Delta OAC=\Delta OBD\) (cạnh góc vuông - góc nhọn kề).
Chúc bạn học tốt!
*Độc giả tự vẽ hình, người giải ko biết cách đăng hình:))*
Gọi giao điểm của CO và BD là Z
Xét 2 tam giác vuông AOC và BOZ có:
OA=OB (O là trung điểm AB)
Góc AOC = góc BOZ (đối đỉnh)
Suy ra: tam giác AOC = tam giác BOZ (cgv-gn)
Do đó: AC=BZ và OC=OZ (các cặp cạnh tương ứng)
Vì OC=OZ nên O là trung điểm CZ => OD là đường trung tuyến tam giác DCZ (1)
Vì OD vuông góc OC nên OD là đường cao tam giác DCZ (2)
Từ (1) và (2) suy ra: tam giác DCZ cân tại D (có OD vừa là đường cao vừa là đường trung tuyến) => CD=DZ (3)
Mặt khác: DZ=BD+BZ
Mà: AC=BZ (cmt)
Nên: DZ=BD+AC (4)
Từ (3) và (4) suy ra: CD=BD+AC (đpcm)
a: Xét ΔAOC vuông tại A và ΔBOD vuông tại B có
OA=OB
góc COA=góc DOB
Do đó; ΔOAC=ΔOBD
b: Xét ΔCOE vuông tại O và ΔDOE vuông tại O có
EO chung
OC=OD
Do đó: ΔCOE=ΔDOE
d: Ta có: OE vuông góc với CD tại E
E là trung điểm của CD
DO đó: OE là trung trực của CD