Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét (O) có
ΔACB nội tiêp
AB là đường kính
Do dó: ΔACB vuông tại C
Xét ΔPAB có
AC,BD là các đường cao
AC cắt BD tại K
DO đo: K là trực tâm
=>PK vuông góc với AB
b: góc HDO=góc HDK+góc ODK
=góc HKD+góc OBK
=90 độ-góc APK+góc APK=90 độ
=>HD là tiếp tuyến của (O)
Xét ΔHDO và ΔHCO có
HD=HC
DO=CO
HO chung
Do đó: ΔHDO=ΔHCO
=>góc HCO=90 độ
=>HC là tiếp tuyến của (O)
a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\Rightarrow\Delta MAB\) cân tại M \(\Rightarrow OM\bot AB\)
Xét \(\Delta IAC\) và \(\Delta IBA:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)
\(\Rightarrow\Delta IAC\sim\Delta IBA\left(g-g\right)\Rightarrow\dfrac{IA}{IB}=\dfrac{IC}{IA}\Rightarrow IA^2=IB.IC\)
b) Vì \(IA=IM\Rightarrow IM^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)
Xét \(\Delta IMC\) và \(\Delta IBM:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)
\(\Rightarrow\Delta IMC\sim\Delta IBM\left(c-g-c\right)\Rightarrow\angle IMC=\angle IBM=\angle BDC\)