K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4

Ta có : AM = \(\dfrac{a}{2}\) 

Mà AB = a ( gt )

=> AM = \(\dfrac{AB}{2}\) => AB = 2AM hay M là trung điểm của đoạn thẳng AB

Vậy M là trung điểm của AB

a: AC=8cm

Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

hay CB=CD

Xét ΔCBD có 

DK là đường trung tuyến

CA là đường trung tuyến

DK cắt CA tại M

Do đó: M là trọng tâm 

=>AM=AC/2=8/3(cm)

b: Xét ΔCAD có

G là trung điểm của AC

GQ//AD

Do đó: Q là trung điểm của CD

Vì M là trọng tâm của ΔCDB nên B,M,Q thẳng hàng

12 tháng 12 2021

a: Xét ΔCIA và ΔDIB có 

IC=ID

\(\widehat{CIA}=\widehat{DIB}\)

IA=IB

Do đó: ΔCIA=ΔDIB

12 tháng 12 2021

sao có mỗi phần a vậy bạn

 

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Câu 1: 

a. Xét tam giác $ABM$ và $DCM$ có:

$BM=CM$ (do $M$ là trung điểm $AB$)

$AM=MD$ (gt)

$\widehat{AMB}=\widehat{DMC}$ (đối đỉnh)

$\Rightarrow \triangle ABM=\triangle DCM$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{DCM}$

Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$

c. 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$BM=CM$

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

$\Rightarrow \widehat{AMB}=\widehat{AMC}$ 

Mà 2 góc này kề bù nên $\widehat{AMB}=\widehat{AMC}=90^0$

$\Rightarrow AM\perp BC$ hay $AM\perp BC$

Mà $M$ là trung điểm của $BC$ nên $AM$ là trung trực của $BC$

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Hình vẽ:

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
27 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

23 tháng 12 2019

a) Ta có AM+MB=AB

                4+  MB=8

                       MB=4

b) ta có MB=4cm;AM=4cm và M nằm trên đoạn thẳng AB

nên M là trung điểm của AB

c) Ta có AK+AM=KM

              4   +  4=MK

 vây        MK=8

   mà AB=8

nên MK=AB

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ANMC có 

I là trung điểm của AM

I là trung điểm của CN

Do đó: ANMC là hình bình hành

Suy ra: AN//MC

hay AN//BC

c: Xét tứ giác ABMK có

I là trung điểm của BK

I là trung điểm của AM

Do đó: ABMK là hình bình hành

Suy ra: AK//BM

hay AK//BC

mà AN//BC

và AN,AK có điểm chung là A

nên A,N,K thẳng hàng

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ANMC có 

I là trung điểm của AM

I là trung điểm của NC

Do đó: ANMC là hình bình hành

Suy ra: AN//MC

hay AN//BC

a) Ta có : 

AM + MB = AB 

=> MB = 3cm

b) Ta thấy : KA + AB = KB 

=> KB = 4 + 7 = 11cm

c) Ta có : 

KA = AM = 4cm

=> A là trung điểm KM