Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Vì M thuộc AB nên AM + MB = AB |
AM + 2 = 5 AM = 3 cm |
Có AN = AM AN = 3 cm |
Do N thuộc tia đối của tia AB nên điểm A nằm giữa N và B |
BN = AB + AN = 5 + 3 = 8 cm |
b)
+ Trên cùng một nửa mặt phẳng có bờ chứa tia AB có: Tia Ax nằm giữa hai tia AB và Ay nên ta có: |
hay |
+ Trên cùng một nửa mặt phẳng có bờ AB, ta có và là hai góc kề bù .
|
hay |
c)
Vì BN = AB + AN = 5 + AN Suy ra BN có độ dài lớn nhất khi AN có độ dài lớn nhất |
Mà AN = AM BN có độ dài lớn nhất khi AM có độ dài lớn nhất |
Có AM AB AM lớn nhất khi AM = AB khi đó điểm M trùng với điểm B. |
Vậy khi điểm M trùng với điểm B thì BN có độ dài lớn nhất. |
Tiếp nhé
nên DB<DM (do 3cm,\(\frac{9}{2}\)cm). Suy ra điểm B nằm giữa 2 điểm D và M. Ta có:
DB+MB=DM
MB=\(\frac{9}{2}\)-3=4,5-3=1.5 (cm)
c, Theo ý a ta có điểm B nằm giữa D và C. Suy ra tia AB nằm giữa 2 tia AD và AC (1)
Ta có: \(\widehat{DAB}\) + \(\widehat{BAC}\) = \(\widehat{DAC}\) (*)
Vì tia Ay là tpg của DAB suy ra:
+Tia Ay nằm giữa 2 tia AD và AB (2)
+\(\widehat{DAy}\) = \(\widehat{yAB}\) = \(\frac{1}{2}\)\(\widehat{DAB}\)= \(\widehat{\frac{DAB}{2}}\) (**)
Vì tia Ax là tpg của BAC suy ra:
+Tia Ax nằm giữa 2 tia BA và BC (3)
+\(\widehat{BAx}\) = \(\widehat{xAC}\) = \(\frac{\widehat{BAC}}{2}\) (***)
Từ (1) (2) và (3) suy ra tia AB nằm giữa 2 tia Ax và Ay. Ta có:
\(\widehat{yAx}\) = \(\widehat{yAB}\) + \(\widehat{BAx}\) = \(\frac{\widehat{DAB}}{2}\)+ \(\frac{\widehat{BAC}}{2}\)
= \(\frac{D\widehat{AB}+\widehat{BAC}}{2}\) = \(\frac{\widehat{DAC}}{2}\)= 120o : 2 = 60o