K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

 Trường hợp :

Gọi M là trung điểm của AB. Khi đó MA = MB = a.

Điểm E nằm giữa hai điểm A và M, điểm F nằm giữa hai điểm B và M.

Do đó ME = MA - AE = a - AE; MF = MB - BF = a - BF.

Vì AE = BF nên ME = MF. Vậy M là trung điểm chung của hai đoạn thẳng AB và EF. Qua M vẽ  thì xy là đường trung trực chung của AB và EF.

 Trường hợp : Chứng minh tương tự

19 tháng 2 2019

Hình tự kẻ nhé

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.

19 tháng 2 2019

bạn kẻ hình luôn đi

16 tháng 4 2020

a, Xét △OAC vuông tại A và △OBD vuông tại B

Có: OA = OB (gt)

    COA = DOB (2 góc đối đỉnh)

=> △OAC = △OBD (cgv-gnk)

b, Xét △OCE và △ODE cùng vuông tại O

Có: OE là cạnh chung

       OC = OD (△OAC = △OBD)

=> △OCE = △ODE (2cgv)

c, Ta có: DE = BE + BD  mà BD = AC (△OBD = △OAC)  ; CE = DE (△OCE = △ODE)

=> CE = BE + AC (đpcm)

ý AC = 1/2 BC còn có điều kiện gì nữa ko??

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I