Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có MM1.2=MM0
MM2.2=MM1 nênMM2.22=MM0
.........
MM2018.2=MM2017 nên.....nên MM2.22018=MM0
nên \(S=\frac{\text{MM_0 }}{\text{MM_1 }}+\frac{\text{MM _0}}{\text{MM }_2}+.......+\frac{\text{MM_0 }}{\text{MM }_{2018}}\)
\(S=2+2^2+...+2^{2018}\)
\(S+2=2+2+2^2+....+2^{2018}=2.2+2^2+...+2^{2018}=2^2+2^2+...+2^{2018}=2^2.2+...+2^{2018}2^3+...+2^{2018}\)
tương tự ta có S+2=22019
nên S=22019-2
nên S<22019
vậy S<22019
\(S^{2020}\)và\(S^{2021}\)?Thế này sai mất thui.
Vì \(2020< 2021\)nên\(S^{2020}< S^{2021}\).
35 o 100 o O x y z \(\widehat{xOz}+\widehat{zOy}=\widehat{xOy}\\\widehat{xOz}+35^o=100^o\\ \widehat{xOy}=100^o-35^o\\ \widehat{xOy}=65^o \)
S<\(2^{2011}\)
Lời giải đâu bạn êy???