K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đoạn chương trình này làm công việc đổi chỗ hai phần tử m[i] và m[j] nếu m[i]>m[j]

*p/s: Đoạn chương trình này thường xuất hiện trong bài sắp xếp tăng dần của dãy số

Đúng rồi đó bạn

11 tháng 4 2020

đúng ko ạ

5 tháng 4 2019

a)Đề kiểm tra Học kì 2 Tin học 11 có đáp án (Đề 3)

b)

 Đề kiểm tra Học kì 2 Tin học 11 có đáp án (Đề 3)

23 tháng 8 2023

Để chứng minh tính đúng đắn của thuật toán sắp xếp chèn với các lệnh thay đổi trên, ta cần chứng minh hai điều kiện sau đây:

Điều kiện ban đầu (trước khi bắt đầu vòng lặp): Sau khi thực hiện lệnh j = 1, giá trị của j đang là 1, và dãy con A[0] chỉ gồm một phần tử là A[0] (vì j-1 là 0). Do đó, dãy con này đã được sắp xếp đúng.

Điều kiện duy trì (trong quá trình vòng lặp): Trong mỗi vòng lặp của while, nếu A[j] < A[j-1], ta hoán đổi giá trị của A[j] và A[j-1] bằng lệnh Đổi chỗ A[j] và A[j-1]. Sau đó, ta giảm giá trị của j đi 1 đơn vị bằng lệnh j = j - 1. Lúc này, giá trị của A[j] là giá trị của A[j-1] trước khi hoán đổi, và giá trị của A[j-1] là giá trị của A[j] trước khi hoán đổi. Điều này đồng nghĩa với việc dãy con A[0], A[1], ..., A[j-1] đã được sắp xếp đúng sau mỗi vòng lặp.

Vậy nên, dãy con A[0], A[1], ..., A[j-1] luôn được sắp xếp đúng sau mỗi vòng lặp của while, và dãy con này sẽ không bị thay đổi giá trị trong quá trình hoán đổi. Do đó, tính đúng đắn của thuật toán sắp xếp chèn vẫn được duy trì sau khi thay toàn bộ phần chèn A[i] vào vị trí đúng của dãy con A[0], A[1], ..., A[i-1] bằng các lệnh trên.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Độ phức tạp của thuật toán sắp xếp nổi bọt là O(n2)

T = O(n) + O(n2) = O(n2)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Công việc của hàm là thực hiện sắp xếp.

Độ phức tạp của thuật toán là O(n2)

1 tháng 2 2019

bạn có nhập sai ct ko chứ làm sao ct chạy nếu như chưa nhập a[m] với a[j] là gì

giả sử nếu như a[m] và a[j] đã được nhập hết thì câu trả lời đúng là D