Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét:
+) Đồ thị hàm số y = x a nghịch biến trên khoảng ( 0 ; + ∞ ) ⇒ a < 0
+) Xét đồ thị hàm số y = log b x v à y = log c x , x > 0
Cho y=1 ta có: log b x 1 = log c x 2 ⇔ x 1 = b , x 2 = c
Mà x 1 < x 2 ⇒ b < c ⇒ a < 0 < b < c . Vậy a<b<c
Chọn đáp án D.
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
Đáp án A
+ Từ đồ thị hàm số y = a x :Với x = 1 ⇒ a > 1
+ Từ đồ thị hàm số y = log b x :Với y = 1 ⇒ x < 1 có log b x = y ⇒ x = b y ⇒ 0 < b < 1
Đồ thị hàm số có tiệm cận đứng x = a > 0; tiệm cận ngang y = b > 0
Mặt khác, ta thấy dạng đồ thị là đường cong đi xuống từ trái sang phải trên các khoảng xác định của nó nên
Đáp án C.