K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

a,\(MH\perp NP=>\angle\left(MHN\right)=\angle\left(MHP\right)=90^O\)(1)

có \(\left\{{}\begin{matrix}\angle\left(HMN\right)+\angle\left(MNH\right)=90^o\\\angle\left(HPM\right)+\angle\left(MNH\right)=90^O\end{matrix}\right.\)

\(=>\angle\left(HMN\right)=\angle\left(HPM\right)\left(2\right)\)

(1)(2)\(=>\Delta HMN\sim\Delta HPM\left(g.g\right)\)

b, đề sai ko có điểm C

3 tháng 8 2021

đâu ra HC vậy ???

a) Xét ΔHMN vuông tại H và ΔHPM vuông tại H có 

\(\widehat{HMN}=\widehat{HPM}\left(=90^0-\widehat{N}\right)\)

Do đó: ΔHMN\(\sim\)ΔHPM(g-g)

6 tháng 7 2021

a, Ta có tổng các góc bằng 180o

=> \(\widehat{P}=55^o\)

- Áp dụng tỉ số lượng giác :

\(\cos35=\dfrac{MN}{4}\)

\(\Rightarrow MN\approx3,277cm\)

\(\sin35=\dfrac{MP}{4}\)

\(\Rightarrow MP\approx2,294cm\)

b, Ta có : \(A=\dfrac{2\cos^2a-\cos^2a-\sin^2a}{\sin a+\cos a}=\dfrac{\left(\sin a+\cos a\right)\left(\cos a-\sin a\right)}{\sin a+\cos a}\)

\(=\cos a-\sin a\)

c, \(sin30< sin35< cos40< sin60< cos25\)

21 tháng 10 2021

a, Vì \(NP^2=46,24=10,24+36=MN^2+MP^2\) nên tg MNP vuông tại M

b, Áp dụng HTL: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{128}{85}\left(cm\right)\\KP=\dfrac{MP^2}{NP}=\dfrac{90}{17}\left(cm\right)\\MK=\sqrt{KN\cdot NP}=\dfrac{48}{17}\left(cm\right)\end{matrix}\right.\)

c, \(S_{MNP}=\dfrac{1}{2}MN\cdot MP=\dfrac{1}{2}\cdot6\cdot3,2=9,6\left(cm^2\right)\)

21 tháng 8 2019

M N P K E F 1 1 1

mk chỉ nêu hướng giải còn bn tự trình bày nha

a,Ta có MN=3cm ,MP=4cm

=>NP=5cm

Ta có MN2=NK.NP  (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )

=>NK=32:5=1,8cm

T2 BN TÍNH ĐC KP

Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)

=>MK=2,4cm

Lại có MK2=MF.MP

=>MF=1,44cm

 b, bn C/m  MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)

Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)

=> \(\widehat{E_1}+\widehat{N}=90^O\)

Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)

\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)

tk mk nha

chúc bn học giỏi

21 tháng 8 2019

mk làm được câu a,b rồi . Mình cần câu c cơ

Áp dụng định lí Pytago vào ΔMPK vuông tại K, ta được:

\(MP^2=MK^2+KP^2\)

\(\Leftrightarrow MP^2=3^2+\left(2\sqrt{3}\right)^2=21\)

hay \(MP=\sqrt{21}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(MK^2=PK\cdot NK\)

\(\Leftrightarrow NK=\dfrac{12}{3}=4\left(cm\right)\)

Xét ΔMPK vuông tại K có

\(\cos\widehat{MPN}=\dfrac{PK}{MP}=\dfrac{3}{\sqrt{21}}=\dfrac{\sqrt{21}}{7}\)

Xét ΔMKN vuông tại K có 

\(\tan\widehat{MNP}=\dfrac{MK}{KN}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

26 tháng 10 2021

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(MN=\dfrac{BC}{2}=2.5\left(cm\right)\)

19 tháng 7 2017

BAN TU VE HINH NHA 

a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)

ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)

B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)

                                               tam giac vuong MKP co\(MK^2=MD\cdot MP\)

 tu day suy ra  MC*MN=MD*MP

C, ta co \(NP=NK+KP\)

ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)

suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)

D,  ta co  trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)

ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)

 lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)

26 tháng 10 2021

Sắp hết h nộp bài rồi 😰😰😰😰😰😰

26 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)