Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ΔMNP, góc M =90 độ , MH⊥NP tại H
a) Chứng tỏ ΔHMN ∼ ΔHPM
b) Biết HN = 3cm , HC=6cm . Tính MN , MP
a) Xét ΔHMN vuông tại H và ΔHPM vuông tại H có
\(\widehat{HMN}=\widehat{HPM}\left(=90^0-\widehat{N}\right)\)
Do đó: ΔHMN\(\sim\)ΔHPM(g-g)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\)
=>\(NH\cdot3NH=6^2=36\)
=>\(NH^2=12\)
=>\(NH=2\sqrt{3}\left(cm\right)\)
=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)
=>\(MP^2=108-36=72\)
=>\(MP=6\sqrt{2}\left(cm\right)\)
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
a: góc NAP=góc NBP=90 độ
=>PA vuông góc MN và NB vuông góc MB
Xét ΔMNP có
NB,PA là đường cao
NB cắt PA tại H
=>H là trực tâm
=>MH vuông góc NP tại I
Xét ΔHAN vuông tại A và ΔHBP vuông tại B có
góc AHN=góc BHP
=>ΔHAN đồng dạng với ΔHBP
b: góc HIP+góc HBP=180 độ
=>HIPB nội tiếp
c: góc BAH=góc IMP
góc IAH=góc BNP
mà góc IMP=góc BNP
nên góc BAH=góc IAH
=>AH là phân giác của góc BAI
góc ABH=góc NMI
góc IBH=góc APN
mà góc NMI=góc APN
nên góc ABH=góc IBH
=>BH là phân giác của góc ABI
Bài 1 :
Xét tam giác MNP vuông tại M, đường cao MH
* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm
=> NP = HN + HP = 4 + 9 = 13 cm
* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm
* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm
Bài 2 :
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm
( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé )
* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm
a,\(MH\perp NP=>\angle\left(MHN\right)=\angle\left(MHP\right)=90^O\)(1)
có \(\left\{{}\begin{matrix}\angle\left(HMN\right)+\angle\left(MNH\right)=90^o\\\angle\left(HPM\right)+\angle\left(MNH\right)=90^O\end{matrix}\right.\)
\(=>\angle\left(HMN\right)=\angle\left(HPM\right)\left(2\right)\)
(1)(2)\(=>\Delta HMN\sim\Delta HPM\left(g.g\right)\)
b, đề sai ko có điểm C
đâu ra HC vậy ???