\(\widehat{N}=2\widehat{P}\); NA là tia phân giác của ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0
20 tháng 12 2018

a)

Xét tam giác NMD và tam giác NED, có:

NM=EH(gt)

\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)

ND là cạnh chung

Suy ra: Tam giác NMD=tam giác NED (c.g.c)

==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)

b) Có: +) MN vuông góc MP

+) EH vuông góc MP

==> MN // EH

c) Có : MN // EH

==> MNP = HEP (2 góc đồng vị)

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh EH \(\perp\)BC . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. 2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm. Tìm độ dài...
Đọc tiếp

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH \(\perp\)BC .
b) Chứng minh BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC.
d) Chứng minh AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm.
Tìm độ dài cạnh NP?
b) Cho tam giác DEF có DE = 10 cm; DF = 24cm; EF = 26cm. Chứng minh tam giác DEF vuông?

3. Cho \(\Delta\)ABC cân tại A có AB = 5cm, BC = 6cm.
Kẻ AD vuông góc với BC (D \(\in\) BC ).
a) Tìm các tam giác bằng nhau trong hình.
b) Tính độ dài AD ?

4. Cho tam giác ABC vuông tại A, có \(\widehat{B}\) và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)EBD.
b) Chứng minh: \(\Delta\)ABE là tam giác đều.
c) Tính độ dài cạnh BC.

5. Cho góc xOy .Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho
OA = OB . Qua A kẻ đường thẳng a vuông góc với Ox ; qua B kẻ đường thẳng b vuông góc với Oy . Hai đường thẳng a và b cắt nhau tại C . Chứng minh rằng :
a ) \(\Delta\)OAC = \(\Delta\)OBC.

b) CA = CB
c) OC là phân giác của góc xOy .

6. Cho \(\Delta\)ABC cân tại A, có \(\widehat{B}\) = 700 . Tính độ \(\widehat{A}\) ?

7. Cho \(\Delta\)ABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH \(\perp\) BC (H \(\in\)BC)
a) Chứng minh HB = HC
b) Tính AH.
c) Kẻ HD \(\perp\) AB (D \(\in\)AB); HE \(\perp\) AC (E \(\in\)AC). CMR: \(\Delta\)HDE là tam giác cân.

1
12 tháng 5 2018

a. Xét tam giác BAE và tam giác BHE có:

BA=BH

BE chung

góc ABE=HBE ( phân giác BE )

=> tam giác BAE = tam giác BHE (c.g.c)

=> góc BAE=BHE ( 2 góc tương ứng)

mà góc BAE= 90 độ

=> góc BHE=90 độ => EH ⊥BC .

b.tam giác BAE = tam giác BHE => BA=BH và AE=EH

=> BE là đường trung trực của AH

c.Xét tam giác AKE và tam giác HCE có:

góc AEK=HEC ( đối đỉnh)

AE=EH

góc EAK=EHC (= 90 độ)

=> tam giác AKE = tam giác HCE (g.c.g)

=> EK=EC

d.Có: BA=BH => tam giác BAH cân tại B

=> góc BHA= 180 độ - góc HBA / 2 (1)

Có: BC=BH+HC

BK=BA+AK

mà BH=BA

HC=AK ( do tam giác AKE = tam giác HCE )

=> BC=BK => tam giác BCK cân tại B

=> góc BCK=180 độ - góc HBA /2 (2)

Từ (1) (2) => góc BHA=BCK

mà 2 góc ở vị trí đồng vị

=> AH//CK

e. Xét tam giác BMC và tam giác BMK có:

BC=BK

CM=KM ( M là trung điểm của KC )​

BM chung

=> tam giác BMC = tam giác BMK (c.c.c)

=> góc MBC=MBK => BM là tia phân giác của góc B

mà BE cũng là phân giác của góc B

=> ba điểm B, E, M thẳng hàng.

24 tháng 3 2020

Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.

a,Chứng minh AB = AC.

b,Tính số đo góc CAO

c,Tam giác ABC là tam giác gì ? Vì sao ?

d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO

e,Tính số đo góc CBO?

g,Chứng minh AO là đường trung trực của BC?

Các bạn giúp mình với,huhukhocroi

21 tháng 1 2020

Hình vẽ bạn tự vẽ nha

Trước hết chứng minh :(tự chứng minh lun)

Cho tam giác ABC vuông cân tại A . Chứng minh \(\sqrt{2}\cdot AB=BC\)(*)

Xét tam giác KDM và tam giác IEM ta có:

KM=MI (gt) 

KMD= IME (gt);

MD=ME (gt);

=>  tam giác KDM = tam giác IEM (c.g.c);

=> KD= EI (tương ứng);

Lại có NMP=90 (gt) => NMK+ KMP=90

=> IME+ KMP =90 => IMK =90  mà KM=MI 

=> tam giác KMI vuông cân tại M

Xét tam giác NMP vuông cân tại M có MNH=45 mà MHN=90 (do MH là đường cao)

=>Tam giác MHN vuông cân tại H 

Áp dụng (*) vào  tam giác KMI vuông cân tại M và tam giác MHN vuông cân tại H ta được:

\(\hept{\begin{cases}\sqrt{2}\cdot MH=MN\\\sqrt{2}\cdot KM=KI\end{cases}}\)mà \(KM\ge MH\)

\(\Rightarrow KI\ge MN\)

Xét 3 điểm K,E,I ta có:

\(KE+EI\ge KI\)

hay \(KE+KD\ge MN\)

21 tháng 1 2020

Hoàng Nguyễn Văn Dòng thứ 5 dưới lên sai rồi mem,tự coi lại nha,không thể như thế được đâu.Tại sao \(KM\ge MH\) lại suy ra \(KI\ge MN\) được ??