Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 2 góc xOy và yOz kề bù .
Om ; On lần lượt là tia phân giác của 2 góc đó
\(\Rightarrow\begin{cases}\widehat{O_1}=\widehat{O_2}=\frac{1}{2}.\widehat{xOy}\\\widehat{O_3}=\widehat{O_4}=\frac{1}{2}.\widehat{yOz}\end{cases}\)
\(\Rightarrow\widehat{O_2}+\widehat{O_3}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)
=> Đpcm
* Vẽ hình: Vẽ hình hơi xấu chút!
* Viết giả thiết, kết luận:
GT: - Góc xOz và góc yOz là hai góc kề bù
- Ot là tia phân giác của góc xOz
- Ot' là tia phân giác của góc yOz
KL: Góc tot' là 1 góc vuông
* Chứng minh:
Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)
Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)
Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)
Vì góc xOz và góc yOz là 2 góc kề bù mà
Ot là tia phân giác xOz
Ot' là tia phân giác yOz
=> Tia Oz nằm giữa hai tia Ot và Ot' nên:
Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ
Vậy tOt' là 1 góc vuông.
Cho định lí: Nếu một đường thẳng cắt hai đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc so le trong bằng nhau thì các góc đồng vị bằng nhau
- Hãy cho biết giả thuyết của định lí đó
- Hãy cho biết kết luận của định lí đó
- Hãy chứng minh định lí đó
Được cập nhật Hôm qua lúc 20:29
Đáp án C
Giả thiết: Cho góc bẹt AOB và tia OD. OE là phân giác góc BOD; OF là phân giác góc AOD.
Kết luận: OE⊥OF
- giả thiết là nếu một đường thẳng cắt 2 đường thẳng phân biệt trong số đó tạo thành 1 góc SLT( so le trong viết tắt) bằng nhau
- kết luận là thì các góc đồng vị bằng nhau
Chứng minh định lý: {c∩a={A}c∩b={B}⇒Aˆ1=B2ˆ;A2ˆ=B3ˆ{c∩a={A}c∩b={B}⇒A^1=B2^;A2^=B3^
Kết luận: A3ˆ=B2ˆ;A2ˆ=B1ˆ;A4ˆ=B3ˆ;A1ˆ=B4ˆ
hơi khó hiểu tí nha
Giả thiết: Nếu một đường thẳng cắt 2 đường thẳng phân biệt trogn số các góc tạo thành có một cặp góc so le trong bằng nhau
Kết luận: thì các cặp góc đồng vị bằng nhau.
Hướng dẫn nha:
Bạn vẽ hai đường thẳng phân biệt song song vs nhau
Vẽ một đường thẳng bất kì đi qua 2 đưuòng thẳng song song đó.
Khi đó sẽ tạo thành hai cặp góc so le trong và đồng vị bằng nhau. Vẽ kí hiệu bằng nhau vào nha.
- Giả thuyết: cho góc tạo bởi 2 tia phân giác của 2 góc kề bù
- Kết luận: đó là 1 góc vuông
- Chứng minh:
Ta có hình vẽ:
Do Om là tia phân giác của góc zOy => góc \(zOm=mOy=\frac{1}{2}.zOy\)
Do On là tia phân giác của góc xOz => góc \(xOn=nOz=\frac{1}{2}.xOz\)
Ta có:
zOy + xOz = 180o (kề bù)
=> \(\frac{1}{2}.zOy+\frac{1}{2}.xOz=\frac{1}{2}.180^o\)
=> zOm + zOn = 90o
Lại có: zOn + zOm = mOn => mOn = 90o là góc vuông (đpcm)
Cảm ơn nha