K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

+) Kẻ \(OI\perp MN;OK\perp PQ\)

\(MI^2=OM^2-OI^2\Rightarrow MN^2=4R^2-4OI^2\)

\(PK^2=OP^2-OK^2\Rightarrow PQ^2=4R^2-4OK^2\)

\(\Rightarrow MN^2+PQ^2=8R^2-4\left(OI^2+OK^2\right)=8R^2-4OH^2\)

Áp dụng đẳng thức: \(x^2+y^2=\frac{\left(x+y\right)^2}{2}+\frac{\left(x-y\right)^2}{2}\)

Ta có: \(MN^2+PQ^2=\frac{\left(MN+PQ\right)^2}{2}+\frac{\left(MN-PQ\right)^2}{2}\)

\(\Leftrightarrow\left(MN+PQ\right)^2=2\left(MN^2+PQ^2\right)-\left(MN-PQ\right)^2\)

\(\Leftrightarrow MN+PQ=\sqrt{8\left(2R^2-OH^2\right)-\left(MN-PQ\right)^2}\)

Do \(8\left(2R^2-OH^2\right)\)không đổi nên

\(\left(MN+PQ\right)_{min}\Leftrightarrow\left(MN-PQ\right)^2_{max}\Leftrightarrow\hept{\begin{cases}MN_{max}\\PQ_{min}\end{cases}}\)hoặc \(\hept{\begin{cases}MN_{min}\\PQ_{max}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}MN=2R\\PQ\perp AB\left(H\right)\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}PQ=2R\\MN\perp AB\left(H\right)\end{cases}}\)

+) \(\left(MN+PQ\right)_{max}\Leftrightarrow\left(MN-PQ\right)^2_{min}\)\(\Leftrightarrow MN=PQ\Leftrightarrow OI=OK\Rightarrow\widehat{MHA}=\widehat{PHA}=45^0\)

30 tháng 12 2020

Gọi M, N lần lượt là trung điểm của AB, CD.

Ta có: \(P=AB+CD=2AM+2CN=2\sqrt{R^2-OM^2}+2\sqrt{R^2-ON^2}\).

Ta dễ dàng chứng minh được \(OM^2+ON^2=OI^2\).

Do đó: \(P=2\left(\sqrt{R^2-OM^2}+\sqrt{R^2-ON^2}\right)\le2\sqrt{2\left(R^2-OM^2+R^2-ON^2\right)}=2\sqrt{2\left(2R^2-OI^2\right)}\).

Đẳng thức xảy ra khi và chỉ khi \(OM=ON\), tức AB tạo với OI một góc 

30 tháng 12 2020

Dạ em cảm ơn ạ

 

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

NV
15 tháng 7 2021

Do tính đối xứng, không mất tính tổng quát, giả sử M nằm trên cung nhỏ AC

Từ M lần lượt kẻ ME vuông góc AB và MF vuông góc CD

Do \(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn \(\Rightarrow\widehat{AMB}=90^0\) hay tam giác AMB vuông tại M

Áp dụng hệ thức lượng: \(ME.AB=MA.MB\) \(\Leftrightarrow MA.MB=2R.ME\)

Tương tự: \(MC.MD=2R.MF\)

\(\Rightarrow MA.MB.MC.MD=4R^2.ME.MF\)

\(\Rightarrow\) Tích số đã cho đạt max khi \(ME.MF\) đạt max

Lại có tứ giác MEOF là hình chữ nhật (4 góc vuông)

\(\Rightarrow EF=MO=R\)

Áp dụng BĐT \(ab\le\dfrac{1}{2}\left(a^2+b^2\right)\) ta có:

\(ME.MF\le\dfrac{1}{2}\left(ME^2+MF^2\right)=\dfrac{1}{2}EF^2=\dfrac{1}{2}R^2\)

Dấu "=" xảy ra khi và chỉ khi \(ME=MF\) hay M nằm chính giữa cung AC

Vậy MA.MB.MC.MD đạt max khi M nằm chính giữa một trong các cung nhỏ AC, CB, BD hoặc DA

NV
15 tháng 7 2021

undefined

28 tháng 10 2017

Ta có ABCD là hình thang vuông tại C và D

Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)

=> AD+BC=2OM=2R.  Chú ý rằng CD ≤ AB (hình chiếu đường xiên)

=>  S A B C D = 1 2 A D + B C . C D

= R.CD ≤ R.AB = 2 R 2

Do đó S A B C D  lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB

16 tháng 4 2020

412 + (340 - x) = 633