Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
Bài 1: dễ, nếu cậu tk tớ sẽ giải
Bài 2: ( tự vẽ hình nhess)
Xét tam giác ABN có BC là trung tuyến ứng AN(CA=CN-gt)
mà BM=2/3 BC
=> M la trọng tâm tam giác ABN( khoảng cách từ điểm đến trọng tâm bằng 2/3 trung tuyến tương ứng)
=> AM là trung tuyến ứng BN
mà AM được kéo dài cắt BN tại I nên I là trung điểm BN
C B M F N A I E O K T
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
A B C M N I 1 2 1 2 E F
CM: Ta có: \(\widehat{BIM}+\widehat{MIN}+\widehat{NIC}=\widehat{BIC}\)
=> \(\widehat{BIC}=2.30^0+90^0=150^0\)
Ta lại có : \(\widehat{FIB}+\widehat{BIC}=180^0\) (kề bù)
=> \(\widehat{FIB}=180^0-\widehat{BIC}=180^0-150^0=30^0\)
=> \(\widehat{FIB}=\widehat{EIC}=30^0\) (đối đỉnh)
Xét t/giác FIB và t/giác MIB
có : \(\widehat{B_1}=\widehat{B_2}\) (gt)
BI : chung
\(\widehat{FIB}=\widehat{BIM}=30^0\)
=> t/giác FIB = t/giác MIB (g.c.g)
=> BF = BM (2 cạnh t/ứng)
Xét t/giác EIC và t/giác NIC
có : \(\widehat{C_1}=\widehat{C_2}\) (gt)
IC : chung
\(\widehat{EIC}=\widehat{NIC}=30^0\)
=> t/giác EIC = t/giác NIC (g.c.g)
=> EC = IN (2 cạnh t/ứng)
Ta có: BC = BM + MN + NC
hay BC = BF + MN + EC
=> CE + BF = BC - MN => CE + BF < BC (Đpcm)
A B C O E F P
Ta có:
\(AF^2=AO^2-OF^2;BE^2=BO^2-OE^2,CP^2=CO^2-OP^2\)
\(AP^2=AO^2-OP^2;EC^2=OC^2-OE^2;BF^2=BO^2-OF^2\)
=> \(AF^2+BE^2+CP^2=AO^2-OF^2+BO^2-OE^2+CO^2-OP^2\)
và \(AP^2+EC^2+BF^2=AO^2-OP^2+OC^2-OE^2+BO^2-OF^2\)
=> Đpcm
b) Ta có:
\(AO+OC>AC,OC+OB>AB,OB+OA>AB\)
=> \(AB+AC+BC< 2\left(OA+OB+OC\right)\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC\)
Ý còn lại em tự làm nhé!:)
Tks nha♡♡♡