Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
-tự vẽ hình
a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:
BH2+AH2=AB2
=> AH2=AB2-BH2(1)
Áp dụng định lý pytago vào tam giác vuông AHC ta có:
AH2+HC2=AC2
=> AH2=AC2-HC2(2)
Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)
b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC
Áp dụng định lý pytago vào tam giác vuông EAF ta có:
AE2+AF2=EF2
Áp dụng định lý pytago vào tam giác vuông ABC ta có:
AB2+AC2=BC2
Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2
=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC
c) nghĩ chưa/ko ra >:
-bn nào giỏi giải hộ =.=
a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)
b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)
c, Tính được BC = 10 cm
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)
Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:
BH = 3,6 cm và CH = 6,4 cm
ta có:
a) AP2 + BH2 + CK2 = AM2 - MP2 + MB2 - MH2 + MC2 - MK2
= AM2 - MK2 + MC2 - MH2 + MB2 - MP2
= AK2 + CH2 + BP2 (đpcm)
b) ta có:
AP2 + BH2 + CK2 = AK2 + CH2 + BP2 (cmt)
=> 2 (AP2 + BH2 + CK2) = (AP2 + BP2) + (CK2 + AK2) + (BH2 + CH2)
\(\ge\)\(\dfrac{\left(AP+BP\right)^2}{2}\)+ \(\dfrac{\left(AK+CK\right)^2}{2}\)+\(\dfrac{\left(CH+BH\right)^2}{2}\)=\(\dfrac{a^2+b^2+c^2}{2}\)
Vậy GTNN của AP2 + BH2 + CK2 là \(\dfrac{a^2+b^2+c^2}{4}\)
<=> M là giao điểm ba đường trung trực của tam giác