Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Đánh giá, tìm vị trí của Δ để khoảng cách giữa 2 đường thẳng là lớn nhất.
Cách giải:
Kẻ AH vuông góc d, qua A kẻ d ' / / d .
Dựng mặt phẳng (Q) chứa d’ và vuông góc AH, (Q) cắt (P) tại Δ 0 . Ta sẽ chứng minh Δ 0 thỏa mãn yêu cầu đề bài (cách d một khoảng cách lớn nhất).
Vì A H ⊥ d A H ⊥ Q ⇒ d / / Q ⇒ d d ; Q = A H = d d ; Δ 0
(do Δ 0 ⊂ Q )
Lấy Δ là đường thẳng bất kì qua A và nằm trong (P). Gọi (Q’) là mặt phẳng chứa d’ và
Δ ⇒ d / / Q '
⇒ d d ; Q ' = d H ; Q '
Kẻ
H A ' ⊥ Q ' , A ' ∈ Q ' ⇒ d d ; Q ' = H A ' = d d ; Δ .
Ta có: H A ' ≤ H A ⇒ Khoảng cách từng d đến Δ lớn nhất bằng AH khi Δ trùng Δ 0.
*) Tìm tọa độ điểm H:
Gọi α : mặt phẳng qua A vuông góc d
⇒ α : 2. x − 1 − 1 y − 3 + 1 z − 1 = 0 ⇔ 2 x − y + z = 0
H = d ∩ α ⇒ x − 1 2 = y + 1 − 1 = z − 3 1 = 2 x − 2 − y − 1 + z − 3 4 + 1 + 1 = 2 x − y + z − 6 6 = 0 − 6 6 = − 1
⇒ x = − 1 y = 0 z = 2 ⇒ H − 1 ; 0 ; 2
⇒ A H → − 2 ; − 3 ; 1
Δ 0 có 1 VTCP: u → = A H → ; n P → , với n P → = 1 ; 1 ; − 4
⇒ u → = 11 ; − 7 ; 1 ⇒ a = 11 ; b = − 7 ⇒ a + 2 b = − 3.
Đáp án B
Cách giải: A B → = - 1 ; - 2 ; 3
d:
x
-
2
1
=
y
-
1
-
2
=
z
-
1
2
có 1 VTCP
v
→
1
;
-
2
;
2
là một VTCP của ∆
∆ là đường thẳng qua A, vuông góc với d => ∆
⊂
(α) mặt phẳng qua A và vuông góc d
Phương trình mặt phẳng (α): 1(x – 3) – 2(y – 2) + 2(z – 1) = 0 ó x – 2y + 2z – 1 = 0
Khi đó, khi và chỉ khi ∆ đi qua hình chiếu H của B lên (α)
*) Tìm tọa độ điểm H:
Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của (α) có phương trình:
=>
<=>
∆ đi qua A(3;2;1), H(1;2;2) có VTCP H A → = 2 ; 0 ; - 1 = u → 2 ; b ; c ; u → = 5