K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

5 tháng 1 2017

Đáp án A

Phương pháp: 

Đánh giá, tìm vị trí của Δ  để khoảng cách giữa 2 đường thẳng là lớn nhất.

Cách giải:

Kẻ AH vuông góc d, qua A kẻ d ' / / d .  

Dựng mặt phẳng (Q) chứa d’ và vuông góc AH, (Q) cắt (P) tại Δ 0 .  Ta sẽ chứng minh Δ 0  thỏa mãn yêu cầu đề bài (cách d một khoảng cách lớn nhất).

Vì A H ⊥ d A H ⊥ Q ⇒ d / / Q ⇒ d d ; Q = A H = d d ; Δ 0

 (do Δ 0 ⊂ Q )

Lấy Δ  là đường thẳng bất kì qua A và nằm trong (P). Gọi (Q’) là mặt phẳng chứa d’ và

Δ ⇒ d / / Q '

⇒ d d ; Q ' = d H ; Q '  

Kẻ

H A ' ⊥ Q ' ,   A ' ∈ Q ' ⇒ d d ; Q ' = H A ' = d d ; Δ .  

Ta có: H A ' ≤ H A ⇒  Khoảng cách từng d đến Δ  lớn nhất bằng AH khi Δ  trùng Δ 0.

*) Tìm tọa độ điểm H:

Gọi α :  mặt phẳng qua A vuông góc d 

⇒ α : 2. x − 1 − 1 y − 3 + 1 z − 1 = 0 ⇔ 2 x − y + z = 0

H = d ∩ α ⇒ x − 1 2 = y + 1 − 1 = z − 3 1 = 2 x − 2 − y − 1 + z − 3 4 + 1 + 1 = 2 x − y + z − 6 6 = 0 − 6 6 = − 1  

⇒ x = − 1 y = 0 z = 2 ⇒ H − 1 ; 0 ; 2  

⇒ A H → − 2 ; − 3 ; 1  

Δ 0   có 1 VTCP: u → = A H → ; n P → ,  với n P → = 1 ; 1 ; − 4  

⇒ u → = 11 ; − 7 ; 1 ⇒ a = 11 ; b = − 7 ⇒ a + 2 b = − 3.  

16 tháng 9 2018

Đáp án B

Cách giải:  A B → = - 1 ; - 2 ; 3

d:  x - 2 1 = y - 1 - 2 = z - 1 2  có 1 VTCP  v → 1 ; - 2 ; 2  là một VTCP của 
 
∆ là đường thẳng qua A, vuông góc với d => ∆ ⊂ (α) mặt phẳng qua A và vuông góc d

Phương trình mặt phẳng (α): 1(x – 3) – 2(y – 2) + 2(z – 1) = 0 ó x – 2y + 2z – 1 = 0

Khi đó,  khi và chỉ khi ∆ đi qua hình chiếu H của B lên (α)

*) Tìm tọa độ điểm H:

Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của (α) có phương trình:

=> 

<=>

∆ đi qua A(3;2;1), H(1;2;2) có VTCP  H A → = 2 ; 0 ; - 1 = u → 2 ; b ; c ; u → = 5

5 tháng 10 2019

16 tháng 5 2019

6 tháng 4 2017

Đáp án C

 

21 tháng 4 2019

1 tháng 1 2018

27 tháng 7 2018

Chọn đáp án C