\(\widehat{AMB}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó:ΔAMB vuông tại M

=>góc AMB=90 độ

b: Ta có: ΔOBM cân tại O

mà OI là đường trung tuyến

nên OI là phân giác

Xét ΔOBS và ΔOMS có

OB=OM

góc BOS=góc MOS

OS chung

Do đó: ΔOBS=ΔOMS
=>góc OMS=90 độ

=>SM là tiếp tuyến của (O)

27 tháng 12 2017

b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)

 tam giác AON = tam giác MON (c.c.c)

=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến

c) có NM Là tiếp tuyến (câu b)

=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)

có O1+O2+O3+O4 = 180đ

=> O2+O3 = 90đ

=> tam giác NOD vuông tại O

Xét tam giác vuông NOD, đường cao OM

=> tam giác OMN đồng dạng với tam giác DMO

=> \(\frac{NM}{OM}=\frac{OM}{MD}\)

=>\(\frac{AN}{OM}=\frac{OM}{DB}\)

=> AN.BD=\(R^2\)

d) có AN.BD=\(R^2\)

=> 2AN . BD = 2 R.R

=>AC.BD = AB . OA

=>\(\frac{AC}{AB}=\frac{OA}{BD}\)

=> tam giác AOC đồng dạng với tam giác BDA

=>góc AOC = góc ADB

Gọi K là giao điểm của AD và OC

=> tam giác AOK đồng dạng ADB (g.g)

=>góc OKA = góc DBA = 90đ

=> \(AD\perp OC\)

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0