K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.

1 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{ax}\frac{1}{\sqrt{a}}+\sqrt{by}\frac{1}{\sqrt{b}}+\sqrt{cz}\frac{1}{\sqrt{c}}\)

\(\le\sqrt{\left(ax+by+cz\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{2S_{ABC}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)

\(=\sqrt{\frac{abc}{2R}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}=\sqrt{\frac{ab+bc+ca}{2R}}\le\sqrt{\frac{a^2+b^2+c^2}{2R}}\)

1 tháng 4 2017

có bị ngược dấu ko nhỉ ?

18 tháng 5 2019

Gọi a là độ dài cạnh của tam giác ABC

+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)

\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)

\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)

\(\Rightarrow x+y+z=h\)             ( do \(\frac{1}{2}a\ne0\) )

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

<=> M là giao điểm 3 đg phân giác của tam giác ABC

5 tháng 9 2017

A B C M N D K I L

Ta có Tam giác ABN= BCK= CAN

=> góc KBC=ẠCN

=> góc DLI = Góc LBC+ LCB=LCB+ACN=60

CMTT: AIL=IDL=60

=> tam giác DIL đều

ÁP dụng định lí Mêlelauyt tam giác BIL có cát tuyến AKC

\(\frac{AI}{AN}.\frac{CN}{CB}.\frac{KB}{KI}=1\)=>\(\frac{AI}{KI}=\frac{3}{2}=\frac{BL}{IK}\)=>BI=IL

=> BI=IL=DI

=> tam giác BDL vuông

(Hơi tắt-chắc sai)

5 tháng 9 2017

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a)      Chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.

b)      Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T) chứng minh: MK.MT = ME.MF

c)       Chứng minh tứ giác IDKT là tứ giác nội tiếp

d)      Đường thẳng vuông góc với IH cắt đường thẳng AB, AC và AD lần lượt tại N, S và P. Chứng minh: P là trung điểm của đoạn thẳng NS.

16 tháng 8 2019

A B C M I r D E F

a) Gọi tâm của đường tròn nội tiếp \(\Delta\)ABC là I. (I) tiếp xúc với BC,CA,AB tại D,E,F

Ta có \(S_{BIC}=\frac{1}{2}ID.BC=r.\frac{BC}{2}\). Tương tự \(S_{CIA}=r.\frac{CA}{2};S_{AIB}=r.\frac{AB}{2}\)

Vậy \(S_{ABC}=r.\frac{BC+CA+AB}{2}=pr\)(đpcm).

b) Đặt \(BC=a,CA=b,AB=c,AM=m_A,BM=m_B,CM=m_C\)

Áp dụng công thức tính đường trung tuyến có \(m_A=\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{2}\)

\(\Rightarrow\frac{1}{m_A}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}\), Hoàn toàn tương tự đối với \(m_B,m_C\)

Từ đó \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{2}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

Lại có \(r=\frac{S}{p}=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}\)(Công thức Heron)

\(=\frac{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}{2\sqrt{a+b+c}}\)

Kết hợp với giả thiết \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{1}{r}\) suy ra:

\(\frac{1}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{1}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{1}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)(1)

Áp dụng BĐT Cauchy: \(VT_{\left(1\right)}\le\frac{1}{\sqrt{\left(b+c\right)^2-a^2}}+\frac{1}{\sqrt{\left(c+a\right)^2-b^2}}+\frac{1}{\sqrt{\left(a+b\right)^2-c^2}}\)

\(=\frac{1}{\sqrt{a+b+c}}.\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}+\sqrt{\left(b+c-a\right)\left(c+a-b\right)}+\sqrt{\left(c+a-b\right)\left(a+b-c\right)}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)\(\le\frac{1}{\sqrt{a+b+c}}.\frac{a+b+c}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}=VP_{\left(1\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)<=> \(\Delta\)ABC đều (đpcm).