K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

M A B H O N I K C D O'

1) Xét đường tròn tâm O' đường kính AN: Điểm I thuộc (O') => ^AIN=900 => ^NIB=900

Xét tứ giác NHBI: ^NHB=^NIB=900 => Tứ giác NHBI nội tiếp đường tròn (đpcm).

2) Ta có tứ giác AKNI nội tiếp (O') => ^KAI+^KNI=1800 (1)

Tứ giác NHBI nội tiếp đường tròn (cmt) => ^INH+^IBH=1800 (2)

MA và MB là 2 tiếp tuyến của (O;R) => MA=MB => \(\Delta\)AMB cân tại M

=> ^MAB=^MBA hay ^KAI=^IBH (3)

Từ (1); (2) và (3) => ^KNI=^INH

Ta thấy: ^NKI=^NAI (Cùng chắn cung NI)

Theo t/c góc tạo bởi tiếp tuyến và dây cung => NAI=^NBH

=> ^NKI=^NBH. Mà ^NBH=^NIH (Cùng chắn cung HN) => ^NKI=^NIH

Xét \(\Delta\)NHI và \(\Delta\)NIK: ^NIH=^NKI; ^KNI=^INH (cmt) => \(\Delta\)NHI~\(\Delta\)NIK (g.g) (đpcm).

3) ^NIH=^NKI. Mà ^NKI=^NAI => ^NIH=^NAI hay ^NIC=^NAB (4)

^NIK=^NAK (Chắn cung NK). Mà ^NAK=^NBA (Góc tạo bởi tiếp tuyến và dây cung)

=> ^NIK=^NBA hay ^NID=^NBA (5)

Cộng (4) & (5) => ^NIC+^NID = ^NAB+^NBA = 1800 - ^ANB = 1800-^CND

=> ^CID+^CND=1800 => Tứ giác CNDI nội tiếp đường tròn => ^NDC=^NIC

Lại có: ^NIC=^NKI=^NAI => ^NDC=^NAI (2 góc đồng vị) => CD//AI hay CD//AB (đpcm).

5 tháng 5 2016

http://d.violet.vn//uploads/resources/601/1950080/preview.swf

25 tháng 2 2019

O M A B H N I K C D E

Ta thấy ^AIN chắn nửa đường tròn đường kính AN => ^AIN = 900 => ^AIN = ^NHB => Tứ giác BINH nội tiếp

=> ^IHN = ^IBN. Mà ^IBN = ^NBA = ^NAM nên ^IHN = ^NAM => IH // AM hay IC // AE (1)

Ta có: ^NAK = ^NIK, ^NBH = ^NIH => ^NAK + ^NBH = ^NIK + ^NIH = ^DIC

Lại có: ^NAK = ^NBA, ^NBH = ^NAB. Suy ra: ^NBA + ^NAB = ^DIC = 1800 - ^DNC => Tứ giác DICN nội tiếp

=> ^NDC = ^NIC = ^NBH = ^NAB => AB // CD hay CE // AI (2)

Từ (1),(2) => Tứ giác AECI là hình bình hành => CI = EA (đpcm).

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B

1 . Cho đường tròn (O).Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB. 1) Chứng minh tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh đường thẳng AE...
Đọc tiếp

1 . 

Cho đường tròn (O).Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB. 1) Chứng minh tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN^2= NF.NA. 4) Chứng minh: MN = NH

2 . Cho tam giác ABC vuông tại A (AB < AC), đưong cao AH. Từ H ve HE và HF lần lượt vuông góc AB và AC (EEAB, F eAC). a/Chứng mình AH=EF b/Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tử giác EHKF là hình bình hành. c/Gọi O là giao điểm của AH và EF , I là giao điểm của HF và EK. d/Chứng minh : OI // AC

3 . rút gọn biểu thức : A = (x2 - 1)(x + 2) - (x - 2)(x2 + 2x + 4)

0