K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2023

a.

Do MA là tiếp tuyến \(\Rightarrow AM\perp OA\Rightarrow\Delta OAM\) vuông tại A

\(\Rightarrow O,A,M\) cùng thuộc đường tròn đường kính OM

Do \(OK\perp BC\Rightarrow\Delta OKM\) vuông tại K

\(\Rightarrow O,K,M\) cùng thuộc đường tròn đường kính OM

\(\Rightarrow M,A,O,K\) cùng thuộc đường tròn đường kính OM

Hay tứ giác MAOK nội tiếp đường tròn đường kính OM, với tâm là trung điểm J của OM và bán kính \(R=\dfrac{OM}{2}\)

b.

Do \(AI||BC\Rightarrow\widehat{IAK}=\widehat{AKM}\) (so le trong)

Lại có MAOK nội tiếp \(\Rightarrow\widehat{AKM}=\widehat{AOM}\) (cùng chắn cung AM)

\(\Rightarrow\widehat{IAK}=\widehat{AOM}\) (1)

Mà \(\widehat{AOM}+\widehat{AMO}=90^0\) (\(\Delta OAM\) vuông tại A theo c/m câu a)

\(\Rightarrow\widehat{IAK}+\widehat{AMO}=90^0\)

c.

Gọi E là trung điểm AI \(\Rightarrow OE\perp IA\)

Mà \(IA||BC\Rightarrow OE\perp BC\Rightarrow O,E,K\) thẳng hàng

\(\Rightarrow KE\) đồng thời là đường cao và trung tuyến trong tam giác KAI

\(\Rightarrow\Delta KAI\) cân tại K \(\Rightarrow\widehat{AIK}=\widehat{IAK}\) \(\Rightarrow\widehat{AIK}=\widehat{AOM}\) (theo (1))

Mặt khác \(\widehat{AIK}\) và \(\widehat{AOD}\) là góc nội tiếp và góc ở tâm cùng chắn cung AD của (O)

\(\Rightarrow\widehat{AIK}=\dfrac{1}{2}\widehat{AOD}\Rightarrow\widehat{AOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOD}\right)\)

\(\Rightarrow\widehat{AOM}=\widehat{MOD}\)

Xét hai tam giác AOM và DOM có:

\(\left\{{}\begin{matrix}OM\text{ chung}\\\widehat{AOM}=\widehat{MOD}\left(cmt\right)\\AO=DO=R\end{matrix}\right.\) \(\Rightarrow\Delta AOM=\Delta DOM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ODM}=\widehat{OAM}=90^0\)

\(\Rightarrow MD\) là tiếp tuyến của (O)

NV
22 tháng 3 2023

loading...

17 tháng 5 2022

a. Ta có ON cắt BC tại I, I là trung điểm của BC, ON là bán kính ⇒ ON ⊥ BC tại I.

Xét △OCI và △OBI :

\(\hat{OIC}=\hat{OIB}=90^o\left(cmt\right)\)

\(IC=IB\left(gt\right)\)

OI chung.

\(\Rightarrow\Delta OCI=\Delta OBI\left(c.g.c\right)\)

⇒ \(\hat{IOC}=\hat{IOB}\) hay : \(\hat{NOC}=\hat{NOB}\Rightarrow\stackrel\frown{NC}=\stackrel\frown{NB}\)

Mà : \(\hat{NAB}\) hay \(\hat{DAB}\) nội tiếp chắn cung NB, \(\hat{NAC}\) hay \(\hat{DAC}\) nội tiếp chắn cung NC.

Vậy : \(\hat{DAC}=\hat{DAB}\) hay AD là phân giác của góc BAC.

 

b. \(\hat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc tạo bởi tia tiếp tuyến và dây cung).

\(\hat{ACB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc nội tiếp chắn cung AB).

\(\Rightarrow\hat{MAB}=\hat{ACB}\Leftrightarrow\hat{MAB}=\hat{ACM}\)

Xét △MAB và △MCA :

\(\hat{MAB}=\hat{ACM}\left(cmt\right)\)

\(\hat{M}\) chung

\(=> \Delta MAB \backsim \Delta MCA (g.g)\) \(\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Leftrightarrow MA^2=MB.MC\left(a\right)\)

Mặt khác : \(\hat{DAB}=\hat{DAC}\left(cmt\right)\) và \(\hat{DCA}=\hat{MAB}\left(cmt\right)\)

Mà \(\hat{ADM}=\hat{DAC}+\hat{DCA}\) (tính chất góc ngoài của tam giác).

\(\Rightarrow\hat{ADM}=\hat{DAB}+\hat{MAB}\Leftrightarrow\hat{ADM}=\hat{MAD}\)

⇒ △ADM cân tại M ⇒ \(MA=MD\left(b\right)\)

Từ (a), (b) : Vậy : \(MD^2=MB.MC\left(đpcm\right)\)

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: Xét tứ giác OIBA có \(\widehat{OIA}=\widehat{OBA}=90^0\)

nên OIBA là tứ giác nội tiếp

b: Xét ΔACD và ΔAEC có 

\(\widehat{ACD}=\widehat{AEC}\)

\(\widehat{DAC}\) chung

Do đó: ΔACD\(\sim\)ΔAEC
SUy ra: AC/AE=AD/AC
hay \(AC^2=AE\cdot AD\left(1\right)\)

c: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
mà OB=OC

nên OA là đường trung trực của BC

Xét ΔOCA vuông tại C có CK là đường cao

nên \(AK\cdot AO=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AO=AD\cdot AE\)

hay AK/AE=AD/AO

Xét ΔAKD và ΔAEO có

AK/AE=AD/AO

góc KAD chung

DO đó: ΔAKD\(\sim\)ΔAEO

Suy ra: \(\widehat{AKD}=\widehat{AEO}\)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0