Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/61999750098.html
Câu hỏi của Hoàng Phúc - Toán lớp 8 - Học toán với OnlineMath
Một cách của a@olm.vn
Giải
Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.
Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.
Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.
=> OX + OY = 1/2 AB là đại lượng không đổi
MZ là đường trung bình của hình thang O'YXO
=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB
Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).
Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB
Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.
Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.
Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.
=> OX + OY = 1/2 AB là đại lượng không đổi
MZ là đường trung bình của hình thang O'YXO
=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB
Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).
Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB
đáp án là M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB
Ta có nhận xét: tổng độ dài hai cạnh của hai hình vuông bằng AB là độ dài không đổi.
Từ O, M, O' hạ các đường vuông góc với AB như hình vẽ.
Ta có: OX bằng nửa cạnh hình vuông AICD; O'Y bằng nửa cạnh hình vuông BIEF.
=> OX + OY = 1/2 AB là đại lượng không đổi
MZ là đường trung bình của hình thang O'YXO
=> MZ = 1/2 (OX + OY) = 1/2 . 1/2 AB = 1/4 AB
Suy ra khoảnh cách từ M đến AB là đại lượng không đổi ( = 1/4 AB).
Vậy M nằm trên đường thẳng song song với AB và cách AB bằng độ dài bằng 1/4 AB
a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau )
mà 2 góc ở đáy lại = 60 => tam giác đều
b) AOB đều => 3 cạnh bằng nhau => AB = OB
AB = AM + MB
OB = OD + DB
mà AB = OB, MB = DB
=> AM = OD, mà AM = MC => MC = OD
MD = OC chứng minh tương tự
c) Xét tam giác ABD và tam giác BOC:
AB = BO
góc ABD = góc BOC = 60
BD = OC
=> ABD = BOC ( c.g.c )
=> AD = BC
d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC
=> góc BAD = góc MCK
Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK
Xét tam giác MAI và tam giác MCK:
MA = MC
góc BAD = góc MCK
AI = CK
=> MAI = MCK ( c.g.c ) => MI = MK
e) góc CEA = góc BED (đối đỉnh)
Xét tam giác BED: BED + EDB + EBD = 180
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC )
=> EDB + EBD = 120 => BED = 60 => CEA = 60
Đây ko phải đáp án của bài này