Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)
\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)
\(=\frac{9}{16}+\frac{7}{16}\)
=1
Trên tia đối của MA lấy điểm D sao cho MA = MD
Xét \(\Delta ABM\) và \(\Delta DCM\) có:
\(BM=CM\left(gt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(MA=MD\) (cách vẽ)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
\(\Rightarrow AB=CD\)(2 cạnh tương ứng)
Xét \(\Delta ACD\) có: \(AD< AC+CD\)
\(\Rightarrow2AM< AC+AB\)
\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)
Xét \(\Delta MAB\)có: \(AM>AB-BM\)
Xét \(\Delta MAC\)có: \(AM>AC-MC\)
\(\Rightarrow AM+AM>AB-BM+AC-MC\)
\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)
\(\Rightarrow2AM>AB+AC-BC\)
\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)
Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)
Ta có: \(\Delta ABM\)
=> AB + BM > AD ( BĐT tam giác) (1)
Ta có :\(\Delta AMC\)
=> AC + CM > AD ( BĐT tam giác) (2)
Từ 1;2 => AB + BM + AC + CM > 2AD
=> AB + AC +BC > 2AD
=> \(AB + AC + BC \over 2 \)> AD (*)
Ta có: \(\Delta ABM\)
=> AB - BM < AD ( hệ quả BĐT tam giác) (3)
Ta có :\(\Delta AMC\)
=> AC - CM < AD ( hệ quả BĐT tam giác) (4)
Từ 3;4 => AB - BM + AC - CM < 2AD
=> AB + AC - BC < 2AD
=> \(AB + AC - BC \over 2 \)< AD (**)
Từ *;** => \(AB + AC - BC \over 2\) < AD < \(AB + AC + BC \over 2 \)
xét tam giác ABM có:
AB+BM>AD (1)
xét tam giác AMB có:
AC+CM>AD (2)
từ (1) và (2) ta có: AB+BM+AC+CM>2AD
=>AB+AC+BC=2AD
\(\Rightarrow\frac{AB+AC+BC}{2}>AD.\)
chứng minh gần tương tự ta được \(\frac{AB+AC-BC}{2}< AD.\)
suy ra đpcm