K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

Gọi $C'(a,b)$ là ảnh của $C$ đối xứng qua $x=1$

$\overrightarrow{CC'}=(a+5,b+1)\perp \overrightarrow{u_d}(1,0)$

$\Rightarrow a+5+0(b+1)=0$

$\Leftrightarrow a=-5$

$C$ đối xứng với $C'$ qua $d$ thì $CC'$ cắt $d$ tại trung điểm của nó

$\Rightarrow \frac{b-1}{2}=1$

$\Leftrightarrow b=3$

Vậy $M'(-5,3)$

NV
21 tháng 12 2020

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc d \(\Rightarrow x+3y+1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên thì \(M'\in d'\) với d' là ảnh của d

\(\left\{{}\begin{matrix}x'=x+3\\y'=y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-3\\y=y'+2\end{matrix}\right.\)

Thế vào (1):

\(x'-3+3\left(y'+2\right)+1=0\)

\(\Leftrightarrow x'+3y'+4=0\)

Vậy pt ảnh có dạng \(x+3y+4=0\)

NV
30 tháng 7 2021

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' nhận (4;-3) là 1 vtpt

Phương trình d':

\(4\left(x-2\right)-3\left(y-1\right)=0\Leftrightarrow4x-3y-5=0\)

Gọi N là giao điểm của d và d' \(\Rightarrow\)tọa độ N thỏa mãn:

\(\left\{{}\begin{matrix}3x+4y+10=0\\4x-3y-5=0\end{matrix}\right.\) \(\Rightarrow N\left(-\dfrac{2}{5};-\dfrac{11}{5}\right)\)

M' là ảnh của M qua phép đối xứng trục d \(\Leftrightarrow\) N là trung điểm MM'

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_N-x_M=-\dfrac{14}{5}\\y_{M'}=2y_N-y_M=-\dfrac{27}{5}\end{matrix}\right.\)

\(\Rightarrow M'\left(-\dfrac{14}{5};-\dfrac{27}{5}\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
Gọi $M'(a,b)$ là ảnh của $M$ đối xứng qua $d$
$\overrightarrow{MM'}=(a-2,b-1)$

Vì $\overrightarrow{MM'}\perp \overrightarrow{u_d}$ nên:

$\frac{a-2}{2}=\frac{b-1}{1}\Leftrightarrow a-2=2(b-1)(1)$

$I$ là trung điểm $MM'$. $x_I=\frac{2+a}{2}; y_I=\frac{b+1}{2}$

$3.\frac{2+a}{2}+4.\frac{b+1}{2}+10=0$

$\Leftrightarrow 3a+4b+30=0(2)$

Từ $(1);(2)\Rightarrow a=-6;b=-3$

23 tháng 12 2018

Đáp án D

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

30 tháng 11 2017

Gọi M′, d′ và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox .

Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0.

Từ đó suy ra phương trình của d' là 3x − 2y – 6 = 0

Thay (1) vào phương trình của (C) ta được x ' 2   +   y ' 2   −   2 x ′   +   4 y ′   −   4   =   0 .

Từ đó suy ra phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9 .

Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3,

từ đó suy ra tâm I' của (C') có tọa độ (1;2) và phương trình của (C') là x   −   1 2   +   y   −   2 2   =   9

29 tháng 1 2017

Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ (d’): 3x + y – 6 = 0.

b. ĐOy (A) = A1 (1 ; 2)

Lấy B(0 ; -1) ∈ d

Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).

⇒ d1 = ĐOy (d) chính là đường thẳng A1B.

⇒ d1: 3x – y – 1 = 0.

c. Phép đối xứng tâm O biến A thành A2(1; -2).

d2 là ảnh của d qua phép đối xứng tâm O

⇒ d2 // d và d2 đi qua A2(1 ; -2)

⇒ (d2): 3x + y – 1 = 0.

d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.

Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).

Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)

Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’

Do đó phương trình d’ là :

Giải bài 2 trang 34 sgk Hình học 11 | Để học tốt Toán 11