K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

19 tháng 4 2018

bạn ơi bạn giải đc chưa chỉ mink với 

a: Xét tứ giác OBAC có 

\(\widehat{OBA}=\widehat{OCA}=\widehat{BOC}=90^0\)

Do đó: OBAC là hình chữ nhật

29 tháng 11 2023

a) Tứ giác OBAC là hình bình hành vì có hai cạnh đối nhau song song (AB và OC) và hai cạnh còn lại cắt nhau vuông góc (OB và AC).

 

b) Gọi D là điểm đối xứng với O qua B, E là điểm đối xứng với O qua A, và F là điểm đối xứng với O qua C. Ta có:

- OD = OB (vì D là điểm đối xứng với O qua B).

- OE = OA (vì E là điểm đối xứng với O qua A).

- OF = OC (vì F là điểm đối xứng với O qua C).

 

Do đó, tứ giác ODEF là hình bình hành vì có hai cạnh đối nhau bằng nhau (OD = OF và OE = OA) và hai cạnh còn lại cắt nhau vuông góc (OE và DF).

 

c) Để chứng minh D đối xứng với F qua A, ta cần chứng minh AD = AF và góc DAF = góc FAD.

 

Vì D là điểm đối xứng của O qua B, nên BD = BO và góc BDO = góc OBD = 90 độ. Tương tự, vì F là điểm đối xứng của O qua C, nên CF = CO và góc CFO = góc OCF = 90 độ.

 

Do đó, ta có:

- AD = AB + BD = AB + BO = AB + OC = AC + CO = AC + CF = AF

- Góc DAF = góc DAB + góc BAF = góc OBC + góc OCB = 90 độ + 90 độ = 180 độ

 

Vậy D đối xứng với F qua A.

29 tháng 11 2023

a) Tứ giác OBAC là hình bình hành vì có hai cạnh đối nhau song song (AB và OC) và hai cạnh còn lại cắt nhau vuông góc (OB và AC).

 

b) Tứ giác ODEF là hình bình hành vì có hai cạnh đối nhau song song (OD và EF) và hai cạnh còn lại cắt nhau vuông góc (OE và DF).

 

c) Để chứng minh D đối xứng với F qua A, ta cần chứng minh AD = AF và góc DAF = góc FAD.

 

Vì D là điểm đối xứng của O qua B, nên BD = BO và góc BDO = góc OBD = 90 độ. Tương tự, vì F là điểm đối xứng của O qua C, nên CF = CO và góc CFO = góc OCF = 90 độ.

 

Do đó, ta có:

- AD = AB + BD = AB + BO = AB + OC = AC + CO = AC + CF = AF

- Góc DAF = góc DAB + góc BAF = góc OBC + góc OCB = 90 độ + 90 độ = 180 độ

 

Vậy D đối xứng với F qua A.

 

B2:

a) Ta có:

- M là trung điểm của BC, nên AM song song với DE và AM = DE.

- AD vuông góc với AB và AM vuông góc với BC, nên AD vuông góc với AM.

- Vậy tứ giác ADME là hình chữ nhật vì có hai cạnh đối nhau bằng nhau và các góc vuông.

 

b) Lấy I đối xứng với D qua M. Ta có:

- IM song song với AD (vì IM và AD đều vuông góc với AB).

- IM = MD (vì I là trung điểm của DM).

- Vậy tứ giác ADIC là hình bình hành vì có hai cạnh đối nhau song song (AD và IC) và hai cạnh còn lại cắt nhau vuông góc (AI và DC).

 

c) Lấy K đối xứng với E qua M. Ta có:

- KM song song với AE (vì KM và AE đều vuông góc với AC).

- KM = ME (vì K là trung điểm của EM).

- Vậy tứ giác AEKB là hình bình hành vì có hai cạnh đối nhau song song (AE và KB) và hai cạnh còn lại cắt nhau vuông góc (AK và EB).

 

d) Để chứng minh DK || EI, ta cần chứng minh DK cắt EI vuông góc.

 

Vì DK là đường chéo của hình chữ nhật ADME, nên DK vuông góc với AM.

Vì EI là đường chéo của hình chữ nhật AEKB, nên EI vuông góc với AK.

 

Vì AM || AK (vì AM và AK đều song song với BC), nên DK cắt EI vuông góc.

 

Vậy DK || EI.