Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
a: góc AMO+góc ANO=90+90=180 độ
=>AMON nội tiếp
b: Xet ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM^2=AB*AC=AM*AN
c: AB*AC=AM^2=AO^2-R^2
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
a: Xét tứ giác KAOB có
\(\widehat{KAO}+\widehat{KBO}=180^0\)
nên KAOB là tứ giác nội tiếp(1)
Xét tứ giác OMKB có \(\widehat{OMK}+\widehat{OBK}=180^0\)
nên OMKB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,M,A,K,B cùng thuộc đường tròn
b: Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
góc AKC chung
Do đó: ΔKAC\(\sim\)ΔKDA
Suy ra: KA/KD=KC/KA
hay \(KA^2=KC\cdot KD\)
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp(1)
Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)
nên OHMB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA
hay \(MA^2=MD\cdot MC=MO^2-R^2\)