K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O 

=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)

Xét từ giác AMON có :

AMO + ANO = 90 + 90 = 180 

Mà 2 góc này ở vị try đối diện nhau 

=> Tứ giác AMON nội tiếp < đpcm>

10 tháng 1 2021

Mong các bạn giúp mk cái hihi

a: góc AMO+góc ANO=90+90=180 độ

=>AMON nội tiếp

b: Xet ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM^2=AB*AC=AM*AN

c: AB*AC=AM^2=AO^2-R^2

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

a: Xét tứ giác KAOB có 

\(\widehat{KAO}+\widehat{KBO}=180^0\)

nên KAOB là tứ giác nội tiếp(1)

Xét tứ giác OMKB có \(\widehat{OMK}+\widehat{OBK}=180^0\)

nên OMKB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,M,A,K,B cùng thuộc đường tròn

b: Xét ΔKAC và ΔKDA có 

\(\widehat{KAC}=\widehat{KDA}\)

góc AKC chung

Do đó: ΔKAC\(\sim\)ΔKDA

Suy ra: KA/KD=KC/KA

hay \(KA^2=KC\cdot KD\)

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

25 tháng 5 2022

 xin hình vẽ vs ạ