K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác APOQ có

\(\widehat{APO}+\widehat{AQO}=180^0\)

Do đó: APOQ là tứ giác nội tiếp

c: Xét (O) có

ΔFPQ nội tiếp

FQ là đường kính

Do đó: ΔFPQ vuông tại P

=>QP\(\perp\)PF

mà QP\(\perp\)OA

nên PF//OA

8 tháng 12 2016

a,theo t/c 2 tiếp tuyến cắt nhau thì \(MA=NA\Rightarrow\Delta AMN\) cân và \(OA\) la p/g cua goc MAN \(\Rightarrow AO\) là dg p/g đóng vai vai trò đg cao \(\Rightarrow AO\perp MN\)

b,tam giác CMN có CN là đg kính nên tam giác CMN là tam giác vuông nên goc CMO +goc OMN =90 mat khác góc OMN+góc AOM =90 (MN \(\perp\) OA)\(\Rightarrow\)góc CMO =goc AOM(cùng phụ góc OMN) ở vị trí so le trong nên MC song song voi AO

C,xet \(\Delta OMA\)\(AM=\sqrt{OA^2-OM^2}=\sqrt{5^2-3^2}=4\Rightarrow AN=AM=4\)

va MH=\(\frac{MA.MO}{OA}=\frac{4.3}{5}=2.4\Rightarrow MN=2MH=4.8\)

mình làm có gì sai mong bạn bỏ qua

 

 

 

A O C M N H

 

25 tháng 4 2017


dap_hinh-bai-26

a) Vì AB, AC là các tiếp tuyến của (O) nên AB=AC ⇒ ΔABC cân tại A.

Ta có AO là đường phân giác của góc ∠BAC của tam giác cân ABC nên AO cũng là đường cao.Suy ra OA ⊥ BC (tính chất của tam giác cân).

b) Gọi I là giao điểm của AO với BC

Ta có: ΔIBA = ΔICA (Cạnh huyền góc nhọn)

⇒IB = IC

Trong ΔBCD ta có:

IB = ID

OC = OD

 ⇒ OI là đường trung bình của Δ BCD

Nên OI//BD hay AO//BD

Vậy AO//BD(đpcm)

c) Vì AB là tiếp tuyển của (O) với B là tiếp điểm nên AB ⊥ OB và AB = AC

Vậy ΔOAB vuông tại B.

Áp dụng định lí Pytago trong tam giác vuông OAB, ta có:

AO2 = AB2 + BO2

⇒ AB2 = AO2 – BO2 = 42 -22 = 12

⇒ AB = √12 = 2√3 (cm)

  • Trong tam giác vuông OAB ta có

sinOAB = OB/OA =2/4 = 1/2

⇒ ∠OAB = 300 ⇒∠BAC = 2∠OAB =2.300 = 600

Tam giác ABC cân tại A và có ∠A = 600 nên ΔABC là tam giác đều. Suy ra AB= BC = CA = 2√3 (cm)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 600.

 
25 tháng 4 2017

a) Vì AB, AC là các tiếp tuyến nên AB=AC và ˆA1=ˆA2A1^=A2^.

Suy ra OA⊥BCOA⊥BC (tính chất của tam giác cân).

b) Điểm B nằm trên đường tròn đường kính CD nên ˆCBD=90∘CBD^=90∘.

Suy ra BD//AO (vì cùng vuông góc với BC).

c) Nối OB thì OB⊥AB.OB⊥AB.

Xét tam giác AOB vuông tại B có:\(\sin A_1=\dfrac{OA}{OB}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Rightarrow\widehat{A_1}=30^O\Rightarrow\widehat{BAC}=60^O\)

Tam giác ABC cân, có một góc 60\(^o\) nên là tam giác đều.

Ta có AB\(^2\)=OA\(^2\)−OB\(^2\)=4\(^2\)−2\(^2\)=12⇒AB=\(2\sqrt{3}\).

Vậy AB=AC=BC=\(2\sqrt{3}cm\)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 60\(^O\)



29 tháng 4 2023

Ta có AM ; AN lần lượt là tiếp tuyến đường tròn(O) với M;N là tiếp điểm 

nên ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800

mà 2 góc này đối nhau 

Vậy tứ giác AMON nt 1 đường tròn 

17 tháng 11 2023

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

10 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

A C 2   =   O A 2   –   O C 2   =   4 2   –   2 2   =   12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

a: Xét (O) có 

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó:H là trung điểm của BC

Xét ΔABC có 

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABC cân tại A

Xét ΔOBA và ΔOCA có 

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến

b: Xét ΔOBA vuông tại B có

\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

=>\(\widehat{BAO}=30^0\)

hay \(\widehat{BAC}=60^0\)

mà ΔABC cân tại A

nên ΔABC đều