Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOBA và ΔOCA có
OB=OC
OA chung
AB=AC
DO đó ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
2: \(AB=\sqrt{OA^2-OB^2}=R\sqrt{3}\)
Gọi giao của BC và OA là H
=>H là trung điểm của BC và BC vuông góc với OA tại H
\(BH=\dfrac{OB\cdot BA}{OA}=\dfrac{R\cdot R\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)
=>BC=R căn 3
3: \(OH=\dfrac{OB^2}{OA}=\dfrac{R}{2}\)
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔBOA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot2R=R^2\)
=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)
b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)
\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)
mà \(\widehat{OBM}=\widehat{OMB}\)
nên \(\widehat{ABM}=\widehat{HBM}\)
=>BM là phân giác của góc ABH
Xét ΔABC có
BM,AM là các đường phân giác
BM cắt AM tại M
Do đó: M là tâm đường tròn nội tiếp ΔABC
DFCE nội tiếp
=>góc DFE=góc DCE=90 độ
ΔDOF đồng dạng với ΔDAB
=>DO/DA=DF/DB(1)
ΔOAB vuông tại B
=>OA^2=BO^2+BA^2
=>AB=Rcăn 3
=>DA=R căn 7
(1) =>R/Rcăn7=DF/2R
=>DF=2R/căn 7
Kẻ BH vuông góc DA
\(S_{ABD}=\dfrac{1}{2}\cdot BD\cdot AB=\dfrac{1}{2}\cdot BH\cdot DA\)
=>BH=2*Rcăn 3/căn 7
=>\(S_{BDF}=\dfrac{2R^2\sqrt{3}}{7}\)