Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do A thuộc đường tròn dk BC -> AB vuông góc với AC
Ta có: BAH và ACI cùng phụ với ABC -> BAH = ACI (1)
Dễ dàng CM dc tam giác ABC đồng dạng với tam giác HAC -> AB/AH = AC/HC -> AB.CH = AH.AC <=> (2.AB.)(1/2.CH) = AH.AC
<=> AM.CI = AH.AC <=> AM/AH = AC/CI (2)
Từ (1),(2) -> Tam giác AHM đồng dạng tam giác CIA
a) Gọi O' là đối xứng của O qua B ta có O'B=R (không đổi). Dựng đường tròn (O',R) thì (O') cố định.
Ta sẽ chứng minh M thuộc (O'). Thật vậy:
Xét \(\Delta\)ABO và \(\Delta\)MBO' có: ^ABO = ^MBO' (Đối đỉnh); BO=BO'; BA=BM => \(\Delta\)ABO = \(\Delta\)MBO' (c.g.c)
=> OA = O'M (2 cạnh tương ứng). Mà OA = R nên O'M = R => M thuộc đường tròn (O';R)
Vậy M luôn nằm trên (O';R) cố định (đpcm).
b) Lấy T là trung điểm đoạn AH. Kẻ đường kính FR của (O). Gọi EF cắt AG tại K.
Dễ thấy IT là đường trung bình trong \(\Delta\)AHC => IT // AC => IT vuông góc AB (Do ^BAC=900)
Xét \(\Delta\)BAI: AH vuông góc BI; IT vuông góc AB (cmt), T thuộc AH => T là trực tâm \(\Delta\)BAI
=> BT vuông góc AI. Xét \(\Delta\)MAH: T trung điểm AH, B trung điểm AM => BT // MH
Do đó: AI vuông góc MH hay AG vuông góc EF tại K. Áp dụng ĐL Pytagore:
\(AF^2+FG^2+GE^2+EA^2=2\left(KA^2+KF^2+KG^2+KE^2\right)=2\left(AF^2+GE^2\right)\)(*)
Ta có EF vuông góc ER và EF vuông góc AG => AG // ER => Tứ giác AERG là hình thang cân => GE = AR
Từ đó (*) trở thành: \(AF^2+FG^2+GE^2+EA^2=2\left(AF^2+AR^2\right)=2\left(2R\right)^2=8R^2=const\)
Vậy biểu thức trên có giá trị ko đổi khi A di chuyển (đpcm).
c) Kẻ HQ vuông góc cạnh AC. Gọi S là tâm ngoại tiếp \(\Delta\)BCP. Gọi bán kính đường rtonf (BCP) là R0
Ta có: AP.AB = AQ.AC (=AH2) (Theo hệ thức lượng) => Tứ giác BPQC nội tiếp hoặc Q nằm trên (BCP)
=> S nằm trên trung trực của PQ. Dễ có T là trung điểm PQ (Vì tứ giác APHQ là hcn)
Nên ST vuông góc PQ tại T. Theo ĐL Pytagore (cho \(\Delta\)PTS) có: \(R_0=SP=\sqrt{PT^2+ST^2}\)(1)
Mặt khác: ^OAC = ^OCA = ^APQ => OA vuông góc PQ. Mà ST vuông góc PQ => OA // ST
Kết hợp với AT // OS (Cùng vuông góc BC) => Tứ giác ATSO là hbh => ST = OA = R (2)
Từ (1) và (2) => \(R_0=\sqrt{PT^2+R^2}=\sqrt{\frac{AH^2}{4}+R^2}\)(Vì PT=PQ/2=AH/2)
=> R0 lớn nhất <=> AH lớn nhất <=> A là điểm chính giữa cung BC của (O). Khi đó AH < R
Vậy nên \(R_0\le\sqrt{\frac{R^2}{4}+R^2}=\frac{R\sqrt{5}}{2}=const\). Đạt được khi A trùng với trung điểm cung BC (A0).
AB cắt đường tròn ngoại tiếp tam giác AEK tại D
Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow\angle EMB+\angle EHB=90+90=180\)
\(\Rightarrow EMBH\) nội tiếp \(\Rightarrow\angle KBD=\angle MBH=\angle AEH\)
Vì KEAD nội tiếp \(\Rightarrow\angle AEH=\angle KDB\Rightarrow\angle KBD=\angle KDB\)
\(\Rightarrow\Delta KDB\) cân tại K có KH là đường cao
\(\Rightarrow H\) là trung điểm BD mà B,H cố định \(\Rightarrow D\) cố định
Vì KEAD nội tiếp \(\Rightarrow I\in\) trung trực AD mà A,D cố định
\(\Rightarrow\) đpcm