\(\in\)R) thuộc đồ thị hàm số (P) \(y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

Điểm $A$ có hoành độ $m$ thuộc đồ thị $y=x^2$ nên $A$ có tọa độ là:

\((m,m^2)\)

\(AB=\sqrt{(m-3)^2+(m^2-0)^2}=\sqrt{m^4+m^2-6m+9}\)

\(=\sqrt{m^4-2m^2+1+3m^2-6m+3+5}\)

\(=\sqrt{(m^2-1)^2+3(m-1)^2+5}\)

\(=\sqrt{(m-1)^2[(m+1)^2+3]+5}\)

\(\geq \sqrt{0+5}=\sqrt{5}\)

Ta thấy AB nhỏ nhất bằng $\sqrt{5}$ tại \((m-1)^2[(m+1)^2+3]=0\Leftrightarrow m=1\)

21 tháng 5 2018

â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0

                                                                       <=> 2m - 1 > 0 

                                                                        <=> 2m     > 1 

                                                                         <=> m     >  \(\frac{1}{2}\)

Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến 

21 tháng 7 2015

a/ Với x ∈ [0;1] thì

\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-1<0\text{ với mọi }x\in\left[0;1\right]\)

\(+m-1>0\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)

\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì m - 2 < 0 <=> m < 2.

Vậy 1 < m < 2.

\(+m-1<0\)\(\Leftrightarrow m<1\)thì \(2\left(m-1\right).1-m\le f\left(x\right)\le2\left(m-1\right).0-m\)

\(\Rightarrow f\left(x\right)\le-m\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì -m < 0 <=> m > 0

Vậy 0 < m < 1.

Kết luận: \(m\in\left(0;2\right)\)

b/ đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1;2) <=> f(x) có 1 nghiệm trong khoảng (1;2)

Với x ∈ (1;2) thì \(f\left(x\right)=2\left(m-1\right)x-m\)

Xét phương trình \(2\left(m-1\right)x-m=0\)

\(+m=1\text{ thì pt thành }-1=0\text{ (vô lí)}\)

\(+\text{Xét }m\ne1.pt\Leftrightarrow x=\frac{m}{2\left(m-1\right)}\)

\(x\in\left(1;2\right)\Rightarrow2>\frac{m}{2\left(m-1\right)}>1\)

Giải bất phương trình trên để được \(\frac{4}{3}<\)\(m<2\)

Kết luận: \(m\in\left(\frac{4}{3};2\right)\)

9 tháng 4 2017

- Bảng giá trị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 4 2021

answer-reply-image

trả lời r 

chúc bn hok tốt

4 tháng 4 2021

khoan đã cậu ơi, tớ có hỏi gì về cạnh góc vuông đâu cậu?

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0