Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S_{ABC}=pr;S_{ACD}=\frac{AC+CD+AD}{2}.r_1;S_{ABD}=\frac{AB+BD+AD}{2}.r_2\)
Vì AD là tia phân giác \(\widehat{BAC}\)nên đường cao từ D đến AB và AC là bằng nhau.
\(\Rightarrow\hept{\begin{cases}S_{ACD}=\frac{S_{ABC}}{3}\\S_{ABD}=\frac{2S_{ABC}}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{AC+CD+AD}{2}.r_1=\frac{pr}{3}\\\frac{AB+BD+AD}{2}.r_2=\frac{2pr}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}AC+CD+AD=\frac{2pr}{3r_1}\left(1\right)\\AB+BD+AD=\frac{4pr}{3r_2}\left(2\right)\end{cases}}\)
Lấy (1) + (2) ta dược
\(AC+CD+AB+BD+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow2p+2AD=\frac{2pr}{3r_1}+\frac{4pr}{3r_2}\)
\(\Leftrightarrow AD=\frac{pr}{3r_1}+\frac{2pr}{3r_2}-p=\frac{pr}{3}\left(\frac{1}{r_1}+\frac{2}{r_2}\right)-p\)
a, Ta có : góc ABC = góc CDB ( = 1/2 sđ cung BC nhỏ )
=> tam giác ABC đồng dạng với tam giác ADB (g.g)
=> AB/AD = AC/AB
=> AB^2 = AC.AD
Tk mk nha
Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
=>ΔABC đồng dạng vơi ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
a: Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)