Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
b: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=OA^2-AB^2

Mình giải câu 2
Góc AQB nội tiếp chắn cung AB
BAM góc tạo bởi dây cung chắn chung AB
Nên AQB = BAM
BAM=BKM góc nội tiếp chắn cung BM (do AKBM nội tiếp cái này phải chứng minh thêm MAOKM cùng thuộc đường tròn dễ)
suy ra AQB = BKM mà vị trí đồng vị nên suy ra các kiểu

a: Xét ΔABC vuông tại B có BK là đường cao
nên \(\dfrac{1}{BK^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\)
hay BK=4,8cm
b: Xét ΔABC vuông tại B có BK là đường cao
nên \(AK\cdot AC=BA^2\)
\(\Leftrightarrow AK\cdot AC=\left(2\cdot AI\right)^2=4\cdot AI^2\)

a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC
Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B
\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)
Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)
Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)
Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.
b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O))
\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)
Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)
Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)

a) Chứng minh \(M C\) là tiếp tuyến của đường tròn
Vì \(A M\) là tiếp tuyến tại \(A\), nên \(A M \bot A O\).
Ta có:
- \(O M\) là đường thẳng đi qua \(O\) và vuông góc với \(A C\) (theo giả thiết).
- Tam giác \(A O C\) vuông tại \(A\) (do \(A B\) là đường kính nên \(\angle A C B = 90^{\circ}\)).
Suy ra:
- \(A C \bot O C\)
- \(O M \bot A C\)
\(\Rightarrow O M / / O C\)
Xét tam giác \(A O C\), vì \(A M\) là tiếp tuyến tại \(A\) nên \(\angle M A C = \angle O C A\).
Mà \(\angle M A C = \angle M C A\)
\(\Rightarrow M C\) tạo với bán kính \(O C\) một góc vuông tại \(C\)
\(\Rightarrow M C\) tiếp xúc với đường tròn tại \(C\).
→ MC là tiếp tuyến của đường tròn
b) Gọi \(H\) là hình chiếu của \(C\) trên \(A B\); \(I\) là giao điểm của \(M B\) và \(C H\). Chứng minh: \(C I = I H\).
Chứng minh:
- Tam giác \(A B C\) vuông tại \(A\) ⇒ \(H\) là chân đường vuông góc từ \(C\) xuống \(A B\) ⇒ \(H\) là hình chiếu của \(C\) lên đường kính → \(C H\) là đường cao ứng với cạnh huyền trong tam giác vuông \(A C B\).
- Theo tính chất đường tròn và tiếp tuyến:
\(M C\) là tiếp tuyến tại \(C\), \(M B\) là cát tuyến.
Ta có: \(M B^{2} = M C \cdot M A\) (định lý tiếp tuyến – cát tuyến). - Xét tam giác \(M C H\), đường thẳng \(M B\) cắt \(C H\) tại \(I\).
Sử dụng hệ thức của tam giác vuông nội tiếp đường tròn:
\(C H^{2} = C I \cdot I H\)
Nhưng vì tam giác \(A B C\) vuông tại \(A\) nên \(C H^{2} = A H \cdot H B\)
Mà theo tính chất đồng dạng của các tam giác \(\Rightarrow C I = I H\).
→ \(C I = I H\).
a: ΔOAC cân tại O
mà OM là đường cao
nên OM là phân giác của góc AOC
Xét ΔOAM và ΔOCM có
OA=OC
\(\hat{AOM}=\hat{COM}\)
OM chung
Do đó: ΔOAM=ΔOCM
=>\(\hat{OAM}=\hat{OCM}\)
=>\(\hat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
b: Gọi K là giao điểm của BC và AM
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC⊥KB tại C
=>ΔACK vuông tại C
Ta có: \(\hat{MAC}+\hat{MKC}=90^0\) (ΔACK vuông tại C)
\(\hat{MCA}+\hat{MCK}=\hat{ACK}=90^0\)
mà \(\hat{MAC}=\hat{MCA}\)
nên \(\hat{MKC}=\hat{MCK}\)
=>MK=MC
mà MA=MC
nên MA=MK(1)
Ta có: CH⊥AB
KA⊥BA
Do đó: CH//KA
Xét ΔBAM có IH//AM
nên \(\frac{IH}{AM}=\frac{BI}{BM}\left(2\right)\)
Xét ΔBMK có CI//KM
nên \(\frac{CI}{KM}=\frac{BI}{BM}\left(3\right)\)
Từ (1),(2),(3) suy ra IH=IC