Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OH là một phần đường kính
CD là dây
OH\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét ΔACD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔACD cân tại A
a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)
⇒MC=MD(2)⇒MC=MD(2)
Mà MA = ME (E đối xứng với A qua M) (3)
Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)
Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD
⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)
Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi
b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)
⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)
Theo hệ thức lượng ta có:
MC2 = MA . MB = 4 . 9 = 36
⇔MC=√36=6(cm)⇔MC=36=6(cm)
Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2
⇔CD=2MC=2.6=12(cm)
em mới học lớp 5 ạ
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
b: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=OA^2-AB^2
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
a: góc ACB=1/2*180=90 độ
=>AC vuông góc BE
góc AME+góc ACE=180 độ
=>AMEC nội tiếp
b: Xét ΔBCA vuông tại C và ΔBME vuông tại M có
góc CBA chung
=>ΔBCA đồng dạng với ΔBME
=>BC/BM=BA/BE
=>BE*BA=BM*BA=3R*2R=6R^2
Ta có: ΔOCD cân tại O
mà OH là đường cao
nên H là trug điểm của CD
Xét tứ giác OCAD có
H là trung điểm chung của OA và CD
OC=OD
Do đó; OCAD là hình thoi