Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1^2\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(ayz+bxz+cxy=0\right)\)
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{xbc+yac+zab}{abc}=1\\ \Rightarrow xbc+yac+zab=abc\)
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=\dfrac{ayz+bxz+cxy}{xyz}=0\\ \Rightarrow ayz+bxz+cxy=0\)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(abc\right)^2}\)
\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc+yac+zab\right)^2}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc\left(ayz+bxz+cxy\right)}\)
\(\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2+2abc.0}\\ =\dfrac{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}{\left(xbc\right)^2+\left(yac\right)^2+\left(zab\right)^2}=1\)
vậy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)(đpcm)
\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.\left(\dfrac{c}{z}+\dfrac{b}{y}+\dfrac{a}{x}\right)=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\dfrac{xyz}{abc}.0=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
* Ta có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{axy}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
* Ta có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{b^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\)Mà \(cxy+bxz+ayz=0\)
\(\Rightarrow2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=0\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Vậy.........................
Ta có:
\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
=>\(\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1\)
=>\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{ayz}{abc}+\dfrac{bxz}{abc}\right)=1\) (1)
Lại có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
=> \(\dfrac{a}{x}.\dfrac{yz}{yz}+\dfrac{b}{y}.\dfrac{xz}{xz}+\dfrac{c}{z}.\dfrac{xy}{xy}=0\)
=>\(\dfrac{ayz}{xuy}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\) (2)
Thay (2) vào (1) ta được
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\)
=> \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
vi a/x + b/y + c/z =0 suy ra ayz/xyz + bxz/xyz + cxy/xyz =0 suy ra ayz+bxz+cxy /xyz =0 suy ra ayz + bxz + cxy =0
vi x/a + y/b =z/c =0 suy ra (x/a + y/b + z/c )^2 =0 suy ra x^2/a^2 +y^2/b^2 + z^2/c^2 + 2(xy/ab + xz/ac + yz/bc) =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(cxy+ bxz +ayz /abc) =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =0
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 +2011 = 2011
a, \(9x^2+y^2+2z^2-18x-6y+4z+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Vì \(\left\{{}\begin{matrix}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Mà \(9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
Vậy...