\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{11}\) . Tính giá trị của \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{3}=k\\\dfrac{y}{4}=k\\\dfrac{z}{11}=k\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=11k\end{matrix}\right.\)

Ta có: \(A=\dfrac{y+z-x}{x+z-y}\)

\(=\dfrac{4k+11k-3k}{3k+11k-4k}\)

\(=\dfrac{12k}{10k}=\dfrac{6}{5}\)

2 tháng 10 2021

em cảm ơn ạ 

3 tháng 2 2019

\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)

30 tháng 5 2018

Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!

Áp dụng t/c DTSBN ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)

=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)

=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)

=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)

=> x+y+z = 1/2 (4)

Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)

=> 2x = 1/2-x+1

=> 3x = 3/2 => x=1/2

Ta có: Từ (2) => 2y = x+z+1

=> 2y + y = x+y+z+1

=> 3y = 1/2+1 (theo 4) => 3y=3/2

=> y=1/2

Ta có : Từ (4) => x+y+z=1/2

=>1/2 + 1/2 +z = 1/2

=> z=-1/2

Vậy ( x;y;z)=(1/2;1/2;-1/2)

NV
9 tháng 12 2018

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{1}{3}=\dfrac{x+y}{\left(x+y\right)+2\left(z+t\right)}\)

\(\Rightarrow\left(x+y\right)+2\left(z+t\right)=3\left(x+y\right)\)

\(\Rightarrow2\left(z+t\right)=2\left(x+y\right)\Rightarrow\dfrac{x+y}{z+t}=1\)

Chứng minh tương tự ta được:

\(\dfrac{y+z}{x+t}=1;\dfrac{z+t}{x+y}=1;\dfrac{t+x}{y+z}=1\)

\(\Rightarrow P=1+1+1+1=4\)

29 tháng 12 2018

+Xét x+y+z+t=0

\(\Rightarrow\)\(\left\{{}\begin{matrix}z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\\x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\end{matrix}\right.\)

Khi đó M=-4

+Xét x+y+z+t\(\ne\)0

ADTC dãy tỉ số bằng nhau ta có

\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\)=\(\dfrac{1}{3}\)

+Với\(\dfrac{x}{y+z+t}\)=\(\dfrac{1}{3}\)

\(\Rightarrow\)3x=y+z+t

\(\Rightarrow\)4x=x+y+z+t

Chứng minh tương tự ta có

4y=x+y+z+t

4z=x+y+z+t

4t=x+y+z+t

Do đó x=y=z=t

Khi đó M=4

26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you

 

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

11 tháng 7 2017

a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)

Thay (1) vào 4x - 3y + 2z = 36

\(\Rightarrow4.k-3.2k+2.3k=36\)

\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)

\(\Rightarrow k=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)

Vậy...............................................................

b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)

Thay (2) vào 2x - 3z = 44

\(\Rightarrow2.5k-3.7k=44\)

\(\Rightarrow-11k=44\Rightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)

Vậy,................................................

c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)

Thay (3) vào -3z - 2y - x = -88

\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)

\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)

\(\Rightarrow k\in\varnothing\)

Suy ra: Không có cặp ( x; y; z) thỏa mãn

Vậy.................................................................

d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)

Thay (4) vào 5y - 2z = 114

\(\Rightarrow6.12k-2.11k=114\)

\(\Rightarrow50k=114\Rightarrow k=2,28\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)

Vậy..............................................

e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)

\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)

Thay (5) vào -2z + 3y - 4x = -452

\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)

\(\Rightarrow-113k=-452\Rightarrow k=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)

Vậy.......................................................

11 tháng 7 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

+) \(\dfrac{x}{1}=9\Rightarrow x=9\)

+) \(\dfrac{y}{2}=9\Rightarrow y=18\)

+) \(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x = 9; y = 18; z = 27.

tương tự

14 tháng 4 2017

Có: \(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\)

23 tháng 5 2017

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2=\)

\(\dfrac{y+z+x}{x}=\dfrac{z+x+y}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\)x=y=z\(\Rightarrow\)\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\)

\(\Rightarrow\)B=(1+1)(1+1)(1+1)=8

23 tháng 9 2017

Ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+x+x}=\dfrac{x+y+z+t}{y+x+z}\)

. Xét TH1: \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

. Xét TH2: \(x+y+z+t\ne0\)

\(\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

\(\Rightarrow\left\{{}\begin{matrix}A=1\\A=-1\end{matrix}\right.\)

23 tháng 9 2017

P =4

leuleu

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)

Do đó: x=250/37; y=150/37; z=525/37

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Ta có: x/2=y/3

nên x/8=y/12(1)

Ta có: y/4=z/5

nên y/12=z/15(2)

Từ (1) và (2) suy ra x/8=y/12=z/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30