Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)
a/ \(\dfrac{a.c}{b.d}=\dfrac{\left(a+c\right).\left(a-c\right)}{\left(b+d\right).\left(b-d\right)}=\dfrac{a^2-c^2}{b^2-d^2}\)
b/ \(\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{3a-2c}{3b-2d}=\dfrac{3a^2-2ac}{3b^2-2bd}\)
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ba+bc\)
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow a< b\)(đúng)
a)Áp dụng
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)
Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)
Từ (1) và (2)=> đpcm
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có
\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Lớp 8:Thì cái này hiển đúng: \(\dfrac{a}{a+k}>\dfrac{a}{a+p}\forall a,p>k>0\)
\(A>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
Vậy: \(A>1\)
Tương tự:
\(A< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Vậy: A<2
Kết luận: \(1< A< 2\)
p/s: bài giải này chỉ đúng với lớp 8; nếu lớp 6 bài giải này chưa đúng.
d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)
<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )
<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2
<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0
<=> 2a2 - 4ab + 2b2 \(\ge\) 0
<=> a2 -2ab +b2 \(\ge\) 0
<=> (a-b)2 \(\ge\) 0 ( luôn đúng)
=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
Và dấu bằng xảy ra <=> a = b
e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
Đặt a/b=c/d=k
=>a=bk; c=dk
1: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
Do đó; \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{b^2k^2-d^2k^2}{b^2-d^2}=k^2\)
Do đó: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)