\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chung minh rang \(\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Ta co :\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)=>\(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

=> \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

Mặt khác:\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (2)

Tu (1) va (2)

=> \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (dpcm)

3 tháng 3 2017

Giải:

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

Vậy...

3 tháng 3 2017

thanks

lam pn dc chu pneoeo

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

9 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=> \(\left(\dfrac{a}{c}\right)^3=\left(\dfrac{b}{d}\right)^3=\left(\dfrac{a+b}{c+d}\right)^3\) (1)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\left(\dfrac{a}{c}\right)^3=\left(\dfrac{b}{d}\right)^3=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\) (2)
Từ (1) và (2) => \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\) (ĐPCM)

31 tháng 7 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\left(\dfrac{a+b}{c+d}\right)^3\) = \(\left(\dfrac{bk+b}{dk+d}\right)^3\) = \(\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3\) = \(\left(\dfrac{b}{d}\right)^3\) (1)

\(\dfrac{a^3+b^3}{c^3+d^3}\) = \(\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}\) = \(\dfrac{b^3.k^3+b^3}{d^3.k^3+d^3}\) = \(\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}\) = \(\dfrac{b^3}{d^3}=\left(\dfrac{b}{d}\right)^3\) (2)

_Từ (1) và (2) suy ra:

\(\left(\dfrac{a+b}{c+d}\right)^3\) = \(\dfrac{a^3+b^3}{c^3+d^3}\)

12 tháng 12 2017

Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Vậy ............................

\(\rightarrowđpcm\)

30 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\)

\((\dfrac{a+b}{c+d})^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\left(\dfrac{b}{d}\right)^3\left(1\right)\)

\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\dfrac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\dfrac{b^3}{d^3}=\left(\dfrac{b}{d}\right)^3\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3-b^3}{c^3-d^3}\)

18 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{b}{d}=\dfrac{a^3}{c^3}=\dfrac{c^3}{b^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+c^3-b^3}{c^3+b^3-d^3}\left(1\right)\)

Từ \(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{b}{d}\)

Ta xét tích: \(\left(\dfrac{a}{c}\right)^3=\dfrac{a}{c}.\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{c}{b}.\dfrac{b}{d}=\dfrac{a}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a^3+c^3-b^3}{c^3+b^3-d^3}=\dfrac{a}{d}\left(dpcm\right)\)

5 tháng 2 2018

hay

2 tháng 8 2018

bài này bạn cứ đặt a=bk, c=dk là được dễ tính lắm sao đó thì thay vào rồi rút gọn là được khi đó bạn sẽ chứng minh được dễ dàng hihi

3 tháng 8 2018

bạn giải luôn giúp mình nha Huyền Anh Lê

5 tháng 11 2018

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

5 tháng 11 2018

thanks bn nhìu nha ok