Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\left(a+b+c\ne0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c=2005\)
BÀI 1:
\(\dfrac{a}{k}=\dfrac{x}{a}\Rightarrow a^2=kx\)
\(\dfrac{b}{k}=\dfrac{y}{b}\Rightarrow b^2\)=ky
Vay \(\dfrac{a^2}{b^2}=\dfrac{kx}{ky}=\dfrac{x}{y}\)
Ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
Mà \(a=2005\)
\(\Rightarrow b=c=2005\)
Vậy \(b=c=2005\)
~ Ủng hộ nhé
Có \(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{a}\) và a + b + c \(\ne\) 0
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{a}\) = \(\frac{a+b+c}{b+c+a}\) = 1
+, \(\frac{a}{b}\) = 1 \(\Rightarrow\) a = b (1)
+, \(\frac{b}{c}\) = 1 \(\Rightarrow\) b = c (2)
+, \(\frac{c}{a}\) = 1 \(\Rightarrow\) c = a (3 )
Từ (1), (2) và (3) \(\Rightarrow\) a = b = c
mà a = 2005 ( bài cho )
\(\Rightarrow\) b = 2005 và c = 2005
Vậy b = 2005; c = 2005
bt lm thì lm đi Hung nguyen , mình cx chưa bt làm thế nào, khó vãi
Bài 1: Nhân chéo
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)
\(=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Theo đề bài thì:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\dfrac{\left(a+b+b+c+c+a\right)-a-b-c}{c+a+b}\)
\(=\dfrac{a+b+c}{c+a+b}=1\)
Nên: \(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)
Mà
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)
\(P=\left(\dfrac{b+c-a+c+a-b}{a}\right)\left(\dfrac{c+a-b+a+b-c}{b}\right)\left(\dfrac{a+b-c+b+c-a}{c}\right)\)
\(P=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=\dfrac{8ab}{abc}=8\)
Vậy \(P=8\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=1\\\dfrac{b}{c}=1\\\dfrac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Mà \(a=2005\Rightarrow b=c=2005\)
Vậy \(b=c=2005\)