\(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}=\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) (2)

Từ (1);(2) => \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)

3 tháng 11 2018

\(a,\)

Xét \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(b,\)

\(\dfrac{a}{b}=\dfrac{c}{d}\) (Chứng minh câu a)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a}{b}\)

\(c,\)

Xét \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow ad=bc\)

\(ad=bc\left(gt\right)\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(d,\)

\(\dfrac{a}{c}=\dfrac{b}{d}\) (Chứng minh câu c)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

\(e,\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2a+b}{2c+d}\)

\(\Rightarrow\dfrac{2a+b}{2c+d}=\dfrac{a}{c}\)

23 tháng 12 2017

Ta có :

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

2 tháng 3 2017

Bài 1:

Giải:

Ta có: \(\dfrac{4x}{6y}=\dfrac{2x+8}{3y+11}\)

\(\Rightarrow\dfrac{2x}{3y}=\dfrac{2x+8}{3y+11}\)

\(\Rightarrow\left(3y+11\right)2x=\left(2x+8\right)3y\)

\(\Rightarrow6xy+22x=6xy+24y\)

\(\Rightarrow22x=24y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{24}{22}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{12}{11}\)

Vậy \(\dfrac{x}{y}=\dfrac{12}{11}.\)

2 tháng 3 2017

Câu 4:

Giải:

Gọi số h/s lớp 7A, 7B lần lượt là a,b (a,b \(\in N\)*)

Theo bài ra ta có: \(a+b=65\)\(\dfrac{a}{6}=\dfrac{b}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{6}=\dfrac{b}{7}=\dfrac{a+b}{6+7}=\dfrac{65}{13}=5\)

Khi đó \(\left[{}\begin{matrix}\dfrac{a}{6}=5\\\dfrac{b}{7}=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=30\\b=35\end{matrix}\right.\)

Vậy số h/s lớp \(\left[{}\begin{matrix}7A:30\\7B:35\end{matrix}\right.\).

27 tháng 12 2017

\(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\\ \Rightarrow P+3=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\\ \Rightarrow P+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\\ =\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)=2018.\dfrac{2021}{4034}=1011.000992\\ \Rightarrow P=1008.000992\)

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha