\(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}\le1\)

Chứng minh :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

Ta có \(\dfrac{1}{\text{1+a}}\)+\(\dfrac{1}{1+b}\)+\(\dfrac{1}{1+c}\)≥2

\(\dfrac{1}{\text{1+a}}\)≥{1-\(\dfrac{1}{1+b}\)}+{1-\(\dfrac{1}{1+c}\)}
\(\dfrac{1}{\text{1+a}}\)\(\dfrac{b}{1+b}\)+\(\dfrac{c}{1+c}\)
≥2.√(bc)/{(1+b)(1+c)}(theo cosi)
Hai bất đẳng thức tương tự rồi nhân vế với vế
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1...
↔abc≤1/8

Tick nha

1 tháng 10 2017

\(\left(a,b,c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

\(\Rightarrow A=\sum\sqrt{\dfrac{1}{1+\left(\dfrac{x}{y}\right)^2}}=\sum\sqrt{\dfrac{y^2}{x^2+y^2}}=\sum\sqrt{\dfrac{y^2\left(x^2+z^2\right)}{\left(x^2+y^2\right)\left(x^2+z^2\right)}}\)

ÁP dụng Bunyakovsky:

\(\sum\sqrt{\dfrac{y^2\left(x^2+z^2\right)}{\left(x^2+y^2\right)\left(x^2+z^2\right)}}\le\sqrt{2\left(x^2y^2+y^2z^2+z^2x^2\right)\left(\sum\dfrac{1}{\left(x^2+y^2\right)\left(x^2+z^2\right)}\right)}\)

\(=\sqrt{2\left(x^2y^2+y^2z^2+z^2x^2\right).\dfrac{2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)}}\)

Cần chứng minh \(VT\le\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow\left(x^2y^2+y^2z^2+z^2x^2\right)\left(x^2+y^2+z^2\right)\le\dfrac{9}{8}\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)\)

( đúng )

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1

24 tháng 7 2018

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

20 tháng 10 2018

A B C D H K a, Vẽ phân giác AD của góc BAC

Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K

Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)

b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)

Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)